Browse > Article
http://dx.doi.org/10.4134/BKMS.b200358

INVERTIBILITY OF GENERALIZED BESSEL MULTIPLIERS IN HILBERT C-MODULES  

Tabadkan, Gholamreza Abbaspour (School of Mathematics and Computer Science Damghan University)
Hosseinnezhad, Hessam (School of Mathematics and Computer Science Damghan University)
Publication Information
Bulletin of the Korean Mathematical Society / v.58, no.2, 2021 , pp. 461-479 More about this Journal
Abstract
This paper includes a general version of Bessel multipliers in Hilbert C∗-modules. In fact, by combining analysis, an operator on the standard Hilbert C∗-module and synthesis, we reach so-called generalized Bessel multipliers. Because of their importance for applications, we are interested to determine cases when generalized multipliers are invertible. We investigate some necessary or sufficient conditions for the invertibility of such operators and also we look at which perturbation of parameters preserve the invertibility of them. Subsequently, our attention is on how to express the inverse of an invertible generalized frame multiplier as a multiplier. In fact, we show that for all frames, the inverse of any invertible frame multiplier with an invertible symbol can always be represented as a multiplier with an invertible symbol and appropriate dual frames of the given ones.
Keywords
Bessel multiplier; modular Riesz basis; standard frame;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), no. 1, 437-452. https://doi.org/10.1016/j.jmaa.2005.09.039   DOI
2 P. Balazs and D. T. Stoeva, Representation of the inverse of a frame multiplier, J. Math. Anal. Appl. 422 (2015), no. 2, 981-994. https://doi.org/10.1016/j.jmaa.2014.09.020   DOI
3 P. G. Casazza, G. Kutyniok, and S. Li, Fusion frames and distributed processing, Appl. Comput. Harmon. Anal. 25 (2008), no. 1, 114-132. https://doi.org/10.1016/j.acha.2007.10.001   DOI
4 J. B. Conway, A Course in Functional Analysis, second edition, Graduate Texts in Mathematics, 96, Springer-Verlag, New York, 1990.
5 R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366. https://doi.org/10.2307/1990760   DOI
6 M. Frank and D. R. Larson, Frames in Hilbert C*-modules and C*-algebras, J. Operator Theory 48 (2002), no. 2, 273-314.
7 K. Grochenig, Time-frequency analysis of Sjostrand's class, Rev. Mat. Iberoam. 22 (2006), no. 2, 703-724. https://doi.org/10.4171/RMI/471   DOI
8 A. Khosravi and B. Khosravi, g-frames and modular Riesz bases in Hilbert C*-modules, Int. J. Wavelets Multiresolut. Inf. Process. 10 (2012), no. 2, 1250013, 12 pp. https://doi.org/10.1142/S0219691312500130   DOI
9 D. Han, W. Jing, and R. N. Mohapatra, Perturbation of frames and Riesz bases in Hilbert C*-modules, Linear Algebra Appl. 431 (2009), no. 5-7, 746-759. https://doi.org/10.1016/j.laa.2009.03.025   DOI
10 W. Jing, Frames in Hilbert C*-modules, ProQuest LLC, Ann Arbor, MI, 2006.
11 A. Khosravi and M. Mirzaee Azandaryani, Bessel multipliers in Hilbert C*-modules, Banach J. Math. Anal. 9 (2015), no. 3, 153-163. https://doi.org/10.15352/bjma/09-3-11   DOI
12 V. M. Manuilov and E. V. Troitsky, Hilbert C*-modules, translated from the 2001 Russian original by the authors, Translations of Mathematical Monographs, 226, American Mathematical Society, Providence, RI, 2005. https://doi.org/10.1090/mmono/226   DOI
13 E. C. Lance, Hilbert C*-modules, London Mathematical Society Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511526206   DOI
14 S. Li and H. Ogawa, Pseudoframes for subspaces with applications, J. Fourier Anal. Appl. 10 (2004), no. 4, 409-431. https://doi.org/10.1007/s00041-004-3039-0   DOI
15 P. Majdak, P. Balazs, W. Kreuzer, and M. Dorfler, A time-frequency method for increasing the signal-to-noise ratio in system identification with exponential sweeps, Proceedings of the 36th International Conference on Acoustics, Speech and Signal Processing, ICASSP 2011, Prag.
16 D. T. Stoeva and P. Balazs, Invertibility of multipliers, Appl. Comput. Harmon. Anal. 33 (2012), no. 2, 292-299. https://doi.org/10.1016/j.acha.2011.11.001   DOI
17 L. Arambasic, On frames for countably generated Hilbert C*-modules, Proc. Amer. Math. Soc. 135 (2007), no. 2, 469-478. https://doi.org/10.1090/S0002-9939-06-08498-X   DOI
18 T. Strohmer, Pseudodifferential operators and Banach algebras in mobile communications, Appl. Comput. Harmon. Anal. 20 (2006), no. 2, 237-249. https://doi.org/10.1016/j.acha.2005.06.003   DOI
19 G. Abbaspour Tabadkan, H. Hosseinnezhad, and A. Rahimi, Generalized Bessel multipliers in Hilbert spaces, Results Math. 73 (2018), no. 2, Paper No. 85, 18 pp. https://doi.org/10.1007/s00025-018-0841-6   DOI
20 A. Alijani and M. A. Dehghan, G-frames and their duals for Hilbert C*-modules, Bull. Iranian Math. Soc. 38 (2012), no. 3, 567-580.
21 B. Aupetit, A primer on spectral theory, Universitext, Springer-Verlag, New York, 1991. https://doi.org/10.1007/978-1-4612-3048-9   DOI
22 P. Balazs, Basic definition and properties of Bessel multipliers, J. Math. Anal. Appl. 325 (2007), no. 1, 571-585. https://doi.org/10.1016/j.jmaa.2006.02.012   DOI
23 P. Balazs, Matrix representation of operators using frames, Sampl. Theory Signal Image Process. 7 (2008), no. 1, 39-54.   DOI
24 P. Balazs, Hilbert-Schmidt operators and frames-classification, best approximation by multipliers and algorithms, Int. J. Wavelets Multiresolut. Inf. Process. 6 (2008), no. 2, 315-330. https://doi.org/10.1142/S0219691308002379   DOI
25 P. Balazs, Matrix representation of bounded linear operators by Bessel sequences, frames and Riesz sequence, SAMPTA'09, Marseille, (2009), 18-22.
26 P. Balazs, B. Laback, G. Eckel, and W. A. Deutsch, Time-frequency sparsity by removing perceptually irrelevant components using a simple model of simultaneous masking, IEEE Trans. Audio speech. Lang. Process. 18 (2009), no. 1, 34-49.   DOI
27 D. Wang and G. J. Brown, Computational auditory scene analysis: Principles, algorithms, and applications, Wiley-IEEE press, 2006.