• Title/Summary/Keyword: modified clay

Search Result 243, Processing Time 0.024 seconds

Arsenic Contamination of Groundwater a Grave Concern: Novel Clay-based Materials for Decontamination of Arsenic (V)

  • Amrita Dwivedi;Diwakar Tiwari;Seung Mok Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.199-205
    • /
    • 2023
  • Arsenic is a highly toxic element, and its contamination is widespread around the world. The natural materials with high selectivity and efficiency toward pollutants are important in wastewater treatment technology. In this study, the mesoporous synthetic hectorite was synthesized by facile hydrothermal crystallization of gels comprising silica, magnesium hydroxide, and lithium fluoride. Additionally, the naturally available clay was modified using zirconium at room temperature. Both synthetic and modified natural clays were employed in the removal of arsenate from aquatic environments. The materials were fully characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform-infrared (FT-IR) analyses. The synthesized materials were used to remove arsenic (V) under varied physicochemical conditions. Both materials, i.e., Zr-bentonite and Zr-hectorite, showed high percentage removal of arsenic (V) at lower pH, and the efficiency decreased in an alkaline medium. The equilibrium-state sorption data agrees well with the Langmuir and Freundlich adsorption isotherms, and the maximum sorption capacity is found to be 4.608 and 2.207 mg/g for Zr-bentonite and Zr-hectorite, respectively. The kinetic data fits well with the pseudo-second order kinetic model. Furthermore, the effect of the background electrolytes study indicated that arsenic (V) is specifically sorbed at the surface of these two nanocomposites. This study demonstrated that zirconium intercalated synthetic hectorite as well as zirconium modified natural clays are effective and efficient materials for the selective removal of arsenic (V) from aqueous medium.

Morphology and Miscibility of PMMA/SMA/Clay Nanocomposites (PMMA/SMA/Clay 나노복합재료의 형태학 및 상용성)

  • Lee, Min-Ho;Min, Byong-Hun;Kim, Jeong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.252-257
    • /
    • 2010
  • Nanocomposites of blends of polymethyl methacrylate (PMMA) and poly (styrene-co-maleic anhydride) (SMA) containing natural and organically modified montmorillonite clays ($Cloisite^{(R)}$25A and $Cloisite^{(R)}$15A) were prepared by solution mixing. Effect of clay on the miscibility, morphology and thermal properties of nanocomposites was investigated. DSC results showed that the addition of clay improved the miscibility of PMMA/SMA blends. Specifically, clay 15A was observed to be most effective than other clays in all nanocomposites regardless of MA contents of SMAs tested. Dispersion of clays was investigated using XRD and TEM and the nanocomposites containing clay 15A again showed the best clay dispersion than the ones with other clays.

The Application of Dual Function Organoclay on Remediation of Toxic Metals and Organic Compounds in Soil-Water System (양친매성 유기점토를 이용한 중금속과 유기 오염물질 동시제거 기술)

  • Ok, Yong-Sik;Lim, Soo-Kil;Kim, Jeong-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.3
    • /
    • pp.177-184
    • /
    • 2003
  • Although clay can sorb significant amounts of inorganic contaminants from soils and wastewater, the hydration of exchangeable cations in clay minerals makes it hydrophilic at the clay mineral surfaces and interlayers. Thus, natural clays are often ineffective in complexing and stabilizing toxic organic contaminants in soils and groundwater environment. But, substituting these hydrated cations with cationic surfactant such as QAC(Quaternary ammonium Compound) can change the natural clay from hydrophilic to hydropobic. Furthermore functionalized organoclay can act as a powerful dual function sorbent for both toxic metals and organic compounds. It also can be used as landfill clay liners, slurry walls, nano-composite materials, petroleum tank farms, waste treatment, and filter systems. To use this modified clay minerals effectively, it is required to understand the fundamental chemistry of organoclay, synthetic procedures, its engineering application, bioavailability of sorbed ion-clay complex, and potential risk of organoclay. In this review, we investigate the use, application and historical background of the organoclay in remediation technology. The state-of-the-art of organoclay research is also discussed. Finally, we suggest some future implications of organoclay in environmental research.

Development of Poly(methyl methacrylate)-Clay Nanocomposites by Using Power Ultrasonic Wave

  • Ryu, Joung Gul;Lee, Jae Wook;Kim, Hyungsu
    • Macromolecular Research
    • /
    • v.10 no.4
    • /
    • pp.187-193
    • /
    • 2002
  • Several methods have been used to synthesize polymer-clay nanocomposites. In-situ polymerization with clay belongs to a classical way to develop nano-structured materials, while melt intercalation is being recognized as another useful approach due to its versatility and environmentally benign character. In this research, we prepared polymer-clay nanocomposites based on the poly (methyl methacrylate) and organically modified montmorillonite via two-stage sonication process. According to the unique mode of power ultrasonic wave, the sonication during processing led to enhanced breakup of the clay agglomerates and reduction in size of the dispersed phase. Optimum conditions to form stable exfoliated nanocomposites were studied for various compositions and conditions. It was found that a novel attempt carried out in this study yielded further improvement in the mechanical performance of the nanocomposites compared to those produced by the conventional melt mixing process, as revealed by DMA, XRD and TEM. And rheological properties of nanocomposites were measured by ARES. As a result, sonicated PMMA-clay nanocomposites exhibits enhanced properties such as storage modulus and thermal stability than that of neat PMMA.

Gas Permeable Properties of Elastomer-Clay Nanocomposite Membrane (유기탄성체-Clay 나노복합재료 막의 기체투과 특성)

  • Nam Sang-Yong;Park Ji-Soon;Rhim Ji-Won;Chung Youn-Suk;Lee Young-Moo
    • Membrane Journal
    • /
    • v.16 no.2
    • /
    • pp.144-152
    • /
    • 2006
  • Elastomer-clay nanocomposite membranes were prepared by melt intercalation mothod with internal mixer. We are used NMR, Ionomer, SEBS (Styrene Ethylene Butadien styrene Copolymer) as elastomer, and modified clay. Gas barrier property of the elastomer-clay nanocomposites membranes were investigated by a gas permeability of $CO_2,\;O_2,\;N_2$ at room temperature. Gas permeability through the elastomer-clay nanocomposite membranes increased due to increased tortuosity made by intercalation of clay in elastomer.

Consolidation Analysis of Soft Clay by Using Modified Consolidation Theory (수정압밀이론을 이용한 연약지반의 압밀해석)

  • Kim, Soo Il;Lee, Jun Hwan;Lee, Seung Rae;Jeong, Sang Seom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.565-572
    • /
    • 1994
  • Consolidation behavior on soft clay was investigated by using one- and two-dimensional analysis based on original and modified one dimensional consolidation theory. For the analytical model, the embankment was simulated by applying single- or multi-surcharge loading to the surface of soft clay. Based on the results obtained, it was found that the predicted settlement by one dimensional consolidation theory was most of the time higher than the observed one at the mid- and especially lateral-zone of embankment. When compared with two dimensional analysis, the result of modified one dimensional consolidation analysis showed almost similar trend to the observed one. There fore even in case where proper selection of soil parameters, one dimensional consolidation theory like as modified one dimensional consolidation theory could be suggested due to its convenience.

  • PDF

Effects of Organoclay on the Thermal Insulating Properties of Rigid Polyurethane Foams Blown by Environmentally Friendly Blowing Agents

  • Kim, Youn-Hee;Choi, Seok-Jin;Kim, Ji-Mun;Han, Mi-Sun;Kim, Woo-Nyon;Bang, Kyu-Tae
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.676-681
    • /
    • 2007
  • A process designed to synthesize rigid polyurethane foam (PUF) with insulative properties via the modulation of PUF cell size via the addition of clay and the application of ultrasound was assessed. The blowing agents utilized in this study include water, cyclopentane, and HFC-365mfc, all of which are known to be environmentally-friendly blowing agents. The rigid PUFs were prepared from polymeric 4,4'-diphenylmethane diisocyanate (PMDI) and polyether polyol with a density of $50kg/m^3$. In addition, rigid PUFs/clay nanocomposites were synthesized with clay modified by PMDI with and without the application of ultrasound. The PUF generated using water as a blowing agent evidenced the highest tensile strength. The tensile strength of the PUF/nanocomposites was higher than that of the neat PUF and the strength was even higher with the application of ultrasound. The cell size of the PUF/clay nanocomposites was less than that of the neat PUF, regardless of the type of blowing agent utilized. It appears that the higher tensile strength and lower cell size of the PUF/clay nanocomposites may be attributable to the uniform dispersion of the clay via ultrasonic agitation. The thermal conductivity of the PUF/clay nanocomposites generated with HCFC-141b evidenced the lowest value when PUF/clay nanocomposites were compared with other blowing agents, including HFC-365mfc, cyclopentane, and water. Ultrasound has also proven effective with regard to the reduction of the thermal conductivity of the PUF/clay nanocomposites with any of the blowing agents employed in this study. It has also been suggested that the uniformly dispersed clay particles in the PUF matrix function as diffusion barriers, which prevent the amelioration of the thermal insulation property.

Synthesis and Characterization of Organo-modified Montmorillonite by Ion-exchange Method (유기물로 수식된 몬트모릴로나이트 제조 및 특성조사)

  • Kim, Jae-Myung;Yoo, Jung-Whan;Choi, Eui-Seok;Lee, Sung-Min;Kim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.41-44
    • /
    • 2004
  • Hydrophilicity and hydrophobicity of pottery bodies can be controlled via chemical substitution of layered clay with hydrophilic and hydrophobic organics. In this study, organo-clay nanocomposites were prepared by ion-exchange of montmorillonite with dodecylamine and hexadecylamine, respectively. Substitution sites of organics and the interval changes of layered materials are characterized by FT-IR and WAXD and organics amounts loaded and water comtents contained by C/S analysis and TG-DSC. The organics were selectively intercalated so that increase layer interval from 12${\AA}\; to\;16{\AA}$. Organo-modified clay is changed to more hydrophobic comparing to clay itself.

Preparation and Mechanical Properties of SBS/Clay Nanocomposites (SBS/Clay나노복합체의 제조 및 기계적 특성)

  • Choi, Hyun-Kuk;Park, Se-Hyeong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Styrene-butadiene-styrene copolymer(SBS)/Clay nanocomposites were prepared by melt mixing method with organic clay modified with dimethyl dihydrogenated-tallow amine(Cloisite 15A) and methyl tallow bis (2-hydroxy-ethyl) amine(Cloisite 30A), respectively. From the results of XRD, we found that mono layered silicates were dispersed in SBS matrix and they were exfoliated nanocomposites. Mechanical properties of exfoliated SBS nanocomposites were more improvedl than those of SBS. Especially, it was found that the addition of small amount of organoclay was enough to improve mechanical properties without increasing hardness.