Morphology and Miscibility of PMMA/SMA/Clay Nanocomposites

PMMA/SMA/Clay 나노복합재료의 형태학 및 상용성

  • Lee, Min-Ho (Department of Chemical Engineering, University of Suwon) ;
  • Min, Byong-Hun (Department of Chemical Engineering, University of Suwon) ;
  • Kim, Jeong-Ho (Department of Chemical Engineering, University of Suwon)
  • Received : 2009.10.27
  • Accepted : 2010.03.10
  • Published : 2010.06.10

Abstract

Nanocomposites of blends of polymethyl methacrylate (PMMA) and poly (styrene-co-maleic anhydride) (SMA) containing natural and organically modified montmorillonite clays ($Cloisite^{(R)}$25A and $Cloisite^{(R)}$15A) were prepared by solution mixing. Effect of clay on the miscibility, morphology and thermal properties of nanocomposites was investigated. DSC results showed that the addition of clay improved the miscibility of PMMA/SMA blends. Specifically, clay 15A was observed to be most effective than other clays in all nanocomposites regardless of MA contents of SMAs tested. Dispersion of clays was investigated using XRD and TEM and the nanocomposites containing clay 15A again showed the best clay dispersion than the ones with other clays.

본 연구에서는 PMMA와 SMA의 블렌드에 몬모릴로나이트(PM) 또는 유기화제로 개질된 clay (Cloisite 25A 또는 15A)를 첨가하여 PMMA/SMA/clay 나노복합재료를 제조하였다. 이 나노복합재료에서 clay가 블렌드의 상용성에 주는 영향에 대해 SMA 중의 MA의 함량을 변화시키며 연구하였다. 나노복합재료 제조 시 용매로는 MEK와 chloroform을 이용하여 용매가 주는 영향에 대해서도 조사하였다. DSC 측정을 이용하여 유리전이온도와 유리전이온도의 폭을 분석한 결과 clay의 첨가로 인해 PMMA/SMA 블렌드의 상용성이 향상되는 것을 확인하였으며 특히 15A가 가장 상용성 증진에 효과적인 것으로 나타났다. 이 결과는 MA의 함량을 7, 14, 32, 43%로 변화시킨 모든 SMA의 경우에 대해 동일하였다. XRD와 TEM을 이용하여 고분자 내에서의 clay의 분산 상태를 관찰하였는데 역시 15A를 포함하는 나노복합재료에서 clay가 가장 효과적으로 분산되어 있음을 확인하였다.

Keywords

References

  1. P. B. Messersmith and E. P. Giannelis, Chem. Mater., 6, 1719 (1994). https://doi.org/10.1021/cm00046a026
  2. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, A. Fujushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1185 (1993). https://doi.org/10.1557/JMR.1993.1185
  3. Jr. F. M. Mirabella, Dekker Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, Inc., 3015 (2004).
  4. B. Noval, Adv. Mater., 5, 422 (1993). https://doi.org/10.1002/adma.19930050603
  5. S. D. Burnside and E. P. Giannelis, Chem. Mater., 7, 1597 (1995). https://doi.org/10.1021/cm00057a001
  6. R. A. Vaia and E. P. Giannelis, Macromolecules, 30, 8000 (1997). https://doi.org/10.1021/ma9603488
  7. J. Park and S. C. Jana, Macromolecules, 36, 2758 (2003). https://doi.org/10.1021/ma021509c
  8. J. Park and S. C. Jana, Macromolecules, 36, 8391 (2003). https://doi.org/10.1021/ma0303465
  9. J. Park and S. C. Jana, Polymer, 45, 7673 (2004). https://doi.org/10.1016/j.polymer.2004.08.075
  10. S. Mehat, F. M. Mirabella, K. Rufener, and A. Bafna, J. Appl. Polym. Sci., 92, 928 (2004). https://doi.org/10.1002/app.13693
  11. X. Huang, S. Lewis, W. J. Brittain, and R. A. Vaia, Macromolecules, 33, 2000 (2000). https://doi.org/10.1021/ma991709x
  12. K. M. Lee and C. D. Han, Macromolecules, 36, 7165 (2003). https://doi.org/10.1021/ma030302w
  13. S. Choi, K. M. Lee, and C. D. Han, Macromolecules, 37, 7649 (2004). https://doi.org/10.1021/ma030585s
  14. D. C. Lee and L. W. Jang, J. Appl. Polym. Sci., 61, 1117 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960815)61:7<1117::AID-APP7>3.0.CO;2-P
  15. G. Chen, X. Chen, Z. Lin, and K. J. Yao, J Mater Sci Lett, 18, 1761 (1999). https://doi.org/10.1023/A:1006627227324
  16. M. Okamoto, S. Moritta, H. Taguchi, Y. H. Kim, T. Kotaka, and H. Tateyama, Polymer, 41, 3887 (2000). https://doi.org/10.1016/S0032-3861(99)00655-2
  17. T. Agag, T. Koga, and T. Takeichi, Polymer, 42, 3399 (2001). https://doi.org/10.1016/S0032-3861(00)00824-7
  18. J. H. Park and S. C. Jana, Polymer, 44, 2091 (2003). https://doi.org/10.1016/S0032-3861(03)00075-2
  19. S. Wang, Y. Hu, Z. Wang, T. Yong, Z. Chen, and W. Fan, Polym. Degrad. Stab., 80, 157 (2003). https://doi.org/10.1016/S0141-3910(02)00397-X
  20. H. Feng, L. Shen, and Z. Feng, Eur. Polym. J., 31, 243 (1995). https://doi.org/10.1016/0014-3057(94)00160-X
  21. M. E. Fowler, J. W. Barlow, and D. R. Paul, Polymer, 28, 1177 (1987). https://doi.org/10.1016/0032-3861(87)90261-8
  22. G. R. Brannock and D. R. Paul, Macromolecules, 23, 5240 (1990). https://doi.org/10.1021/ma00227a011
  23. Product data, Southern Clay Products, Inc, Gonzales, TX.
  24. A. Robard, D. Patterson, and G. Delmas, Macromolecules, 10, 706 (1977). https://doi.org/10.1021/ma60057a042
  25. C. C. Hsu and J. M. Prausnitz, Macromolecules, 7, 321 (1974).
  26. S. Djadoun, R. N. Goldberg, and H. Morawetz, Macromolecules, 10, 1013 (1977).
  27. P. R. Alexandrovich, F. E. Karasz, and W. J. MacKnight, Polymer, 18, 1022 (1977). https://doi.org/10.1016/0032-3861(77)90006-4