Browse > Article

Effects of Organoclay on the Thermal Insulating Properties of Rigid Polyurethane Foams Blown by Environmentally Friendly Blowing Agents  

Kim, Youn-Hee (Department of Chemical and Biological Engineering, Korea University)
Choi, Seok-Jin (Department of Chemical and Biological Engineering, Korea University)
Kim, Ji-Mun (Department of Chemical and Biological Engineering, Korea University)
Han, Mi-Sun (Department of Chemical and Biological Engineering, Korea University)
Kim, Woo-Nyon (Department of Chemical and Biological Engineering, Korea University)
Bang, Kyu-Tae (Department of Environmental Systems Engineering, Korea University)
Publication Information
Macromolecular Research / v.15, no.7, 2007 , pp. 676-681 More about this Journal
Abstract
A process designed to synthesize rigid polyurethane foam (PUF) with insulative properties via the modulation of PUF cell size via the addition of clay and the application of ultrasound was assessed. The blowing agents utilized in this study include water, cyclopentane, and HFC-365mfc, all of which are known to be environmentally-friendly blowing agents. The rigid PUFs were prepared from polymeric 4,4'-diphenylmethane diisocyanate (PMDI) and polyether polyol with a density of $50kg/m^3$. In addition, rigid PUFs/clay nanocomposites were synthesized with clay modified by PMDI with and without the application of ultrasound. The PUF generated using water as a blowing agent evidenced the highest tensile strength. The tensile strength of the PUF/nanocomposites was higher than that of the neat PUF and the strength was even higher with the application of ultrasound. The cell size of the PUF/clay nanocomposites was less than that of the neat PUF, regardless of the type of blowing agent utilized. It appears that the higher tensile strength and lower cell size of the PUF/clay nanocomposites may be attributable to the uniform dispersion of the clay via ultrasonic agitation. The thermal conductivity of the PUF/clay nanocomposites generated with HCFC-141b evidenced the lowest value when PUF/clay nanocomposites were compared with other blowing agents, including HFC-365mfc, cyclopentane, and water. Ultrasound has also proven effective with regard to the reduction of the thermal conductivity of the PUF/clay nanocomposites with any of the blowing agents employed in this study. It has also been suggested that the uniformly dispersed clay particles in the PUF matrix function as diffusion barriers, which prevent the amelioration of the thermal insulation property.
Keywords
rigid polyurethane foam; PUF/clay nanocomposies; blowing agent; thermal conductivity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 15  (Related Records In Web of Science)
Times Cited By SCOPUS : 14
연도 인용수 순위
1 D. Klempner and K. C. Frisch, Handbook of Polymeric Foams and Foam Technology, Oxford University Press, New York, 1991
2 K. S. Yang, X. Guo, W. Meng, J. Y. Hyun, I. K. Kang, and Y. I. Kim, Macromol. Res., 11, 488 (2003)   DOI   ScienceOn
3 B. K. Kim, J. W. Seo, and H. M. Jeong, Macromol. Res., 11, 198 (2003)   DOI
4 S. Subramani, J. M. Lee, J. H. Kim, and I. W. Cheong, Macromol. Res., 13, 418 (2005)   DOI
5 A. Biedermann, C. Kudoke, A. Merten, E. Minogue, U. Rotermund, H. P. Ebert, U. Heinemann, J. Fricke, and H. Seifert, J. Cell. Plast., 37, 467 (2001)   DOI
6 K. H. Choe, D. S. Lee, and W. N. Kim, Polym. J., 36, 368 (2004)   DOI   ScienceOn
7 W. J. Seo, Y. T. Sung, S. J. Han, Y. H. Kim, O. H. Ryu, H. S. Lee, and W. N. Kim, J. Appl. Polym. Sci., 101, 2879 (2006)   DOI   ScienceOn
8 W. J. Choi, S. H. Kim, Y. J. Kim, and S. C. Kim, Polymer, 45, 6045 (2004)   DOI   ScienceOn
9 T. Widya and C. W. Macosko, J. Macromol. Sci.; Part B: Phys., 44, 897 (2005)   DOI   ScienceOn
10 J. K. Yun, H. J Yoo, and H. D. Kim, Macromol. Res., 15, 22 (2007)   과학기술학회마을   DOI
11 G. Oertel, Polyurethane Handbook, Hanser Publisher, New York, 1993
12 W. J. Seo, H. C. Jung, and W. N. Kim, J. Appl. Polym. Sci., 90, 12 (2003)   DOI   ScienceOn
13 G. Wood, The ICI Polyurethane Handbook, 2nd Ed., John Wiely & Sons, New York, 1990
14 M. A. Osman, V. Mittal, M. Morbidelli, and U. W. Suter, Macromolecules, 36, 9851 (2003)   DOI   ScienceOn
15 D. I. Cha, K. W. Kim, G. H. Chu, H. Y. Kim, K. H. Lee, and N. Bhattarai, Macromol. Res., 14, 331 (2006)   과학기술학회마을   DOI
16 U.S. Environmental Protection Agency (www.epa.gov), Federal Register, Vol. 65, No. 243, Rules and Regulations, page 78980, December 18 , 2000
17 D.W. Van Krevelen, Properties of Polymers, 2nd Ed., Elsevier, New York, 1990
18 X. Cao, L. J. Lee, T. Widya, and C. Macosko, Polymer, 46, 775 (2005)   DOI   ScienceOn
19 K. J. Yao, M. Song, D. J. Hourston, and D. Z. Luo, Polymer, 43, 1017 (2002)
20 M. Modesti and A. Lorenzetti, Eur. Polym. J., 39, 263 (2003)   DOI   ScienceOn
21 J. H. Chang and Y. U. An, J. Polym. Sci.; Part B: Polym. Phys., 40, 670 (2002)
22 H. D. Park, J. W. Bae, K. D. Park, T. Ooya, N. Yui, J. H. Jang, D. K. Han, and J. W. Shin, Macromol. Res., 14, 73 (2006)   과학기술학회마을   DOI
23 W. J. Seo, H. C. Jung, and W. N. Kim, J. Appl. Polym. Sci., 93, 2334 (2004)   DOI   ScienceOn
24 S. M. Kang, D. C. Ku, J. H. Lim, Y. K. Yang, N. S. Kwak, and T. S. Hwang, Macromol. Res., 13, 212 (2005)   DOI
25 W. J. Seo, Y. T. Sung, S. G. Kim, Y. B. Lee, K. H. Choe, S. H. Choe, S. B. Kim, and W. N. Kim, J. Appl. Polym. Sci., 102, 3764 (2006)   DOI   ScienceOn