DOI QR코드

DOI QR Code

Arsenic Contamination of Groundwater a Grave Concern: Novel Clay-based Materials for Decontamination of Arsenic (V)

  • Amrita Dwivedi (Department of Humanistic Studies, Indian Institute of Technology, Banaras Hindu University) ;
  • Diwakar Tiwari (Department of Chemistry, School of Physical Sciences, Mizoram University) ;
  • Seung Mok Lee (Department of Biosystem and Convergence, Catholic Kwandong University)
  • Received : 2023.01.25
  • Accepted : 2023.02.17
  • Published : 2023.04.10

Abstract

Arsenic is a highly toxic element, and its contamination is widespread around the world. The natural materials with high selectivity and efficiency toward pollutants are important in wastewater treatment technology. In this study, the mesoporous synthetic hectorite was synthesized by facile hydrothermal crystallization of gels comprising silica, magnesium hydroxide, and lithium fluoride. Additionally, the naturally available clay was modified using zirconium at room temperature. Both synthetic and modified natural clays were employed in the removal of arsenate from aquatic environments. The materials were fully characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform-infrared (FT-IR) analyses. The synthesized materials were used to remove arsenic (V) under varied physicochemical conditions. Both materials, i.e., Zr-bentonite and Zr-hectorite, showed high percentage removal of arsenic (V) at lower pH, and the efficiency decreased in an alkaline medium. The equilibrium-state sorption data agrees well with the Langmuir and Freundlich adsorption isotherms, and the maximum sorption capacity is found to be 4.608 and 2.207 mg/g for Zr-bentonite and Zr-hectorite, respectively. The kinetic data fits well with the pseudo-second order kinetic model. Furthermore, the effect of the background electrolytes study indicated that arsenic (V) is specifically sorbed at the surface of these two nanocomposites. This study demonstrated that zirconium intercalated synthetic hectorite as well as zirconium modified natural clays are effective and efficient materials for the selective removal of arsenic (V) from aqueous medium.

Keywords

References

  1. G. Bulut, u. Yenial, E. Emiroglu, and A. A. Sirkeci, Arsenic removal from aqueous solution using pyrite, J. Cleaner Prod., 84, 526-532 (2014). https://doi.org/10.1016/j.jclepro.2013.08.018
  2. C. K. Jain and R. D. Singh, Technological options for the removal of arsenic with special reference to South East Asia, J. Environ. Manage., 107, 1-18 (2012). https://doi.org/10.1016/j.jenvman.2012.04.016
  3. J. S. Ahn, C.-M. Chon, H.-S. Moon, and K.-W. Kim, Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems, Water Res., 37, 2478-2488 (2003). https://doi.org/10.1016/S0043-1354(02)00637-1
  4. S. Bhowmick, S. Chakraborty, P. Mondal, W. Van Renterghem, S. Van den Berghe, G. Roman-Ross, D. Chatterjee, and M. Iglesias, Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism, Chem. Eng. J., 243, 14-23 (2014). https://doi.org/10.1016/j.cej.2013.12.049
  5. Y. Glocheux, A. B. Albadarin, C. Mangwandi, E. Stewart, and G. M. Walker, Production of porous aluminium and iron sulphated oxyhydroxides using industrial grade coagulants for optimised arsenic removal from groundwater, J. Ind. Eng. Chem., 25, 56-66 (2015). https://doi.org/10.1016/j.jiec.2014.10.013
  6. S. Liu, S. Kang, G. Wang, H. Zhao, and W. Cai, Micro/nanostructured porous Fe-Ni binary oxide and its enhanced arsenic adsorption performances, J. Colloid Interface Sci., 458, 94-102 (2015). https://doi.org/10.1016/j.jcis.2015.07.038
  7. M. F. Hughes, Arsenic toxicity and potential mechanisms of action, Toxicol. Lett., 133, 1-16 (2002). https://doi.org/10.1016/S0378-4274(02)00084-X
  8. D. Mohan and C. U. Pittman Jr., Arsenic removal from water/wastewater using adsorbents-A critical review, J. Hazard. Mater., 142, 1-53 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.006
  9. A. Sarkar and B. Paul, The global menace of arsenic and its conventional remediation - A critical review, Chemosphere, 158, 37-49 (2016). https://doi.org/10.1016/j.chemosphere.2016.05.043
  10. EPA, Technologies and Costs for Removal of Arsenic from Drinking Water, 268, Washington DC, USA (2000).
  11. X. Guo and F. Chen, Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater, Environ. Sci. Technol, 39, 6808-6818 (2005). https://doi.org/10.1021/es048080k
  12. Lalhmunsiama, D. Tiwari, and S.-M. Lee, Activated carbon and manganese coated activated carbon precursor to dead biomass in the remediation of arsenic contaminated water, Environ. Eng. Res., 17, 41-48 (2012). https://doi.org/10.4491/eer.2012.17.1.041
  13. G. Wendimu, F. Zewge, and E. Mulugeta, Aluminium-iron-amended activated bamboo charcoal (AIAABC) for fluoride removal from aqueous solutions, J. Water Process Eng., 16, 123-131 (2017). https://doi.org/10.1016/j.jwpe.2016.12.012
  14. A. O .A. Tuna, E. Ozdemir, E. B. Simsek, and U. Beker, Removal of As(V) from aqueous solution by activated carbon-based hybrid adsorbents: Impact of experimental conditions, Chem. Eng. J., 223, 116-128 (2013). https://doi.org/10.1016/j.cej.2013.02.096
  15. A. Bortun, M. Bortun, J. Pardini, S. A. Khainakov, and R. Garcia, Synthesis and characterization of a mesoporous hydrous zirconium oxide used for arsenic removal from drinking water, Mater. Res. Bull., 45, 142-148 (2010). https://doi.org/10.1016/j.materresbull.2009.09.030
  16. Z. Fang, K. Zhang, X. Zhang, and B. Pan, Enhanced water decontamination from methylated arsenic by utilizing ultra-small hydrated zirconium oxides encapsulated inside gel-type anion exchanger, Chem. Eng. J., 430, 132641 (2022).
  17. H. Tokuyama, E. Kitamura, and Y. Seida, Development of zirconia nanoparticle-loaded hydrogel for arsenic adsorption and sensing, React. Funct. Polym., 146, 104427 (2020).
  18. R. Sandoval, A. M. Cooper, K. Aymar, A. Jain, and K. Hristovski, Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles, J. Hazard. Mater., 193, 296-303 (2011). https://doi.org/10.1016/j.jhazmat.2011.07.061
  19. S. A. Chaudhry, T. A. Khan, and I. Ali, Zirconium oxide-coated sand based batch and column adsorptive removal of arsenic from water: Isotherm, kinetic and thermodynamic studies, Egypt. J. Petrol., 26, 553-563 (2017). https://doi.org/10.1016/j.ejpe.2016.11.006
  20. Q. Guo, Y. Li, L.-W. Zheng, X.-Y. Wei, Y. Xu, Y.-W. Shen, K.-G. Zhang, and C.-G. Yuan, Facile fabrication of Fe/Zr binary MOFs for arsenic removal in water: High capacity, fast kinetics and good reusability, J. Environ. Sci., 128, 213-223 (2023). https://doi.org/10.1016/j.jes.2022.08.002
  21. S. Lou, B. Liu, Y. Qin, Y. Zeng, W. Zhang, and L. Zhang, Enhanced removal of As(III) and As(V) from water by a novel zirconium-chitosan modified spherical sodium alginate composite, Inter. J. Biol. Macromol., 176, 304-314 (2021). https://doi.org/10.1016/j.ijbiomac.2021.02.077
  22. B. Seynnaeve, K. Folens, C. Krishnaraj, I. K. Ilic, C. Liedel, J. Schmidt, A. Verberckmoes, G. Du Laing, K. Leus, and P. Van Der Voort, Oxygen-rich poly-bisvanillonitrile embedded amorphous zirconium oxide nanoparticles as reusable and porous adsorbent for removal of arsenic species from water, J. Hazard. Mater., 413, 125356 (2021).
  23. Y. Yin, T. Zhou, H. Luo, J. Geng, W. Yu, and Z. Jiang, Adsorption of arsenic by activated charcoal coated zirconium-manganese nanocomposite: Performance and mechanism, Colloids Surf. A, 575, 318-328 (2019). https://doi.org/10.1016/j.colsurfa.2019.04.093
  24. M. Kumar, A. M. Isloor, T. Somasekhara Rao, A. F. Ismail, R. Farnood, and P. M. G. Nambissan, Removal of toxic arsenic from aqueous media using polyphenylsulfone/cellulose acetate hollow fiber membranes containing zirconium oxide, Chem. Eng. J., 393, 124367 (2020).
  25. G. Sethia, H. A. Patel, R. R. Pawar, and H. C. Bajaj, Porous synthetic hectorites for selective adsorption of carbon dioxide over nitrogen, methane, carbon monoxide and oxygen, Appl. Clay Sci., 91-92, 63-69 (2014). https://doi.org/10.1016/j.clay.2014.01.019
  26. Lalhmunsiama, S. M. Lee, S. S. Choi, and D. Tiwari, Simultaneous removal of Hg(II) and phenol using functionalized activated carbon derived from areca nut waste, Metals, 7, 248 (2017).
  27. X. Lv, Y. Zhang, W. Fu, J. Cao, J. Zhang, H. Ma, and G. Jiang, Zero-valent iron nanoparticles embedded into reduced graphene oxide-alginate beads for efficient chromium (VI) removal, J. Colloid Interface Sci., 506, 633-643 (2017). https://doi.org/10.1016/j.jcis.2017.07.024
  28. Lalhmunsiama, R. R. Pawar, S.-M. Hong, K. J. Jin, and S.-M. Lee, Iron-oxide modified sericite alginate beads: A sustainable adsorbent for the removal of As(V) and Pb(II) from aqueous solutions, J. Mol. Liq., 240, 497-503 (2017). https://doi.org/10.1016/j.molliq.2017.05.086
  29. S. S. Silva, R. A. S. Ferreira, L. Fu, L. D. Carlos, J. F. Mano, R. L. Reis, and J. Rocha, Functional nanostructured chitosan-siloxane hybrids, J. Mater. Chem., 15, 3952-3961 (2005). https://doi.org/10.1039/b505875a
  30. A. Adamczuk and D. Kolodynska, Equilibrium, thermodynamic and kinetic studies on removal of chromium, copper, zinc and arsenic from aqueous solutions onto fly ash coated by chitosan, Chem. Eng. J., 274, 200-212 (2015). https://doi.org/10.1016/j.cej.2015.03.088
  31. S. M. Lee, Lalhmunsiama, and D. Tiwari, Sericite in the remediation of Cd(II)- and Mn(II)-contaminated waters: Batch and column studies, Environ. Sci. Pollut. Res., 21, 3686-3696 (2013). https://doi.org/10.1007/s11356-013-2310-9
  32. R. Malsawmdawngzela, Lalhmunsiama, D. Tiwari, and S. Lee, Synthesis of novel clay-based nanocomposite materials and its application in the remediation of arsenic contaminated water, Int. J. Environ. Sci. Technol. (2022). https://doi.org/10.1007/s13762-022-04506-z.
  33. H. Cui, Y. Su, Q. Li, S. Gao, and J. K. Shang, Exceptional arsenic (III,V) removal performance of highly porous, nanostructured ZrO2 spheres for fixed bed reactors and the full-scale system modeling, Water Res., 47, 6258-6268 (2013). https://doi.org/10.1016/j.watres.2013.07.040
  34. J. Zhou, Y. Liu, B. Li, W. Huang, J. Qin, H. Li, and G. Chen, Hydrous zirconium oxide modified biochar for in situ remediation of arsenic contaminated agricultural soil, J. Environ. Chem. Eng., 10, 108360 (2022).
  35. R. R. Pawar, Lalhmunsiama, M. Kim, J.-G. Kim, S.-M. Hong, S. Y. Sawant, and S. M. Lee, Efficient removal of hazardous lead, cadmium, and arsenic from aqueous environment by iron oxide modified clay-activated carbon composite beads, Appl. Clay Sci., 162, 339-350 (2018). https://doi.org/10.1016/j.clay.2018.06.014
  36. M. Kilic, C. Kirbiyik, O. Cepeliogullar, and A. E. Putun, Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis, Appl. Surf. Sci., 283, 856-862 (2013). https://doi.org/10.1016/j.apsusc.2013.07.033
  37. K. Y. Foo, and B. H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156, 2-10 (2010). https://doi.org/10.1016/j.cej.2009.09.013
  38. Y. Bentahar, C. Hurel, K. Draoui, S. Khairoun, and N. Marmier, Adsorptive properties of Moroccan clays for the removal of arsenic(V) from aqueous solution, Appl. Clay Sci., 119, 385-392 (2016). https://doi.org/10.1016/j.clay.2015.11.008
  39. R. Mukhopadhyay, K. M. Manjaiah, S. Datta, R. Yadav, and B. Sarkar, Inorganically modified clay minerals: Preparation, characterization, and arsenic adsorption in contaminated water and soil, Appl. Clay Sci., 147, 1-10 (2017). https://doi.org/10.1016/j.clay.2017.07.017
  40. K.-Y. Shin, J.-Y. Hong, and J. Jang, Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: Isotherms and kinetic study, J. Hazard. Mater., 190, 36-44 (2011). https://doi.org/10.1016/j.jhazmat.2010.12.102
  41. J. O. Aremu, M. Lay, and G. Glasgow, Kinetic and isotherm studies on adsorption of arsenic using silica based catalytic media, J. Water Process Eng., 32, 100939 (2019).
  42. S. M. Lee, Lalhmunsiama, Thanhmingliana, and D. Tiwari, Porous hybrid materials in the remediation of water contaminated with As(III) and As(V), Chem. Eng. J., 270, 496-507 (2015). https://doi.org/10.1016/j.cej.2015.02.053