Browse > Article

Morphology and Miscibility of PMMA/SMA/Clay Nanocomposites  

Lee, Min-Ho (Department of Chemical Engineering, University of Suwon)
Min, Byong-Hun (Department of Chemical Engineering, University of Suwon)
Kim, Jeong-Ho (Department of Chemical Engineering, University of Suwon)
Publication Information
Applied Chemistry for Engineering / v.21, no.3, 2010 , pp. 252-257 More about this Journal
Abstract
Nanocomposites of blends of polymethyl methacrylate (PMMA) and poly (styrene-co-maleic anhydride) (SMA) containing natural and organically modified montmorillonite clays ($Cloisite^{(R)}$25A and $Cloisite^{(R)}$15A) were prepared by solution mixing. Effect of clay on the miscibility, morphology and thermal properties of nanocomposites was investigated. DSC results showed that the addition of clay improved the miscibility of PMMA/SMA blends. Specifically, clay 15A was observed to be most effective than other clays in all nanocomposites regardless of MA contents of SMAs tested. Dispersion of clays was investigated using XRD and TEM and the nanocomposites containing clay 15A again showed the best clay dispersion than the ones with other clays.
Keywords
nanocomposites; miscibility; TEM; DSC; PMMA/SMA blend;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 J. Park and S. C. Jana, Polymer, 45, 7673 (2004).   DOI   ScienceOn
2 D. C. Lee and L. W. Jang, J. Appl. Polym. Sci., 61, 1117 (1996).   DOI   ScienceOn
3 M. Okamoto, S. Moritta, H. Taguchi, Y. H. Kim, T. Kotaka, and H. Tateyama, Polymer, 41, 3887 (2000).   DOI   ScienceOn
4 M. E. Fowler, J. W. Barlow, and D. R. Paul, Polymer, 28, 1177 (1987).   DOI   ScienceOn
5 P. B. Messersmith and E. P. Giannelis, Chem. Mater., 6, 1719 (1994).   DOI   ScienceOn
6 Product data, Southern Clay Products, Inc, Gonzales, TX.
7 C. C. Hsu and J. M. Prausnitz, Macromolecules, 7, 321 (1974).
8 S. Djadoun, R. N. Goldberg, and H. Morawetz, Macromolecules, 10, 1013 (1977).
9 P. R. Alexandrovich, F. E. Karasz, and W. J. MacKnight, Polymer, 18, 1022 (1977).   DOI   ScienceOn
10 G. R. Brannock and D. R. Paul, Macromolecules, 23, 5240 (1990).   DOI
11 A. Robard, D. Patterson, and G. Delmas, Macromolecules, 10, 706 (1977).   DOI
12 H. Feng, L. Shen, and Z. Feng, Eur. Polym. J., 31, 243 (1995).   DOI   ScienceOn
13 T. Agag, T. Koga, and T. Takeichi, Polymer, 42, 3399 (2001).   DOI   ScienceOn
14 J. H. Park and S. C. Jana, Polymer, 44, 2091 (2003).   DOI   ScienceOn
15 S. Wang, Y. Hu, Z. Wang, T. Yong, Z. Chen, and W. Fan, Polym. Degrad. Stab., 80, 157 (2003).   DOI   ScienceOn
16 K. M. Lee and C. D. Han, Macromolecules, 36, 7165 (2003).   DOI   ScienceOn
17 J. Park and S. C. Jana, Macromolecules, 36, 8391 (2003).   DOI   ScienceOn
18 S. Mehat, F. M. Mirabella, K. Rufener, and A. Bafna, J. Appl. Polym. Sci., 92, 928 (2004).   DOI   ScienceOn
19 X. Huang, S. Lewis, W. J. Brittain, and R. A. Vaia, Macromolecules, 33, 2000 (2000).   DOI   ScienceOn
20 S. Choi, K. M. Lee, and C. D. Han, Macromolecules, 37, 7649 (2004).   DOI   ScienceOn
21 B. Noval, Adv. Mater., 5, 422 (1993).   DOI   ScienceOn
22 G. Chen, X. Chen, Z. Lin, and K. J. Yao, J Mater Sci Lett, 18, 1761 (1999).   DOI   ScienceOn
23 Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, A. Fujushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1185 (1993).   DOI
24 Jr. F. M. Mirabella, Dekker Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, Inc., 3015 (2004).
25 S. D. Burnside and E. P. Giannelis, Chem. Mater., 7, 1597 (1995).   DOI
26 J. Park and S. C. Jana, Macromolecules, 36, 2758 (2003).   DOI   ScienceOn
27 R. A. Vaia and E. P. Giannelis, Macromolecules, 30, 8000 (1997).   DOI   ScienceOn