• 제목/요약/키워드: modified Chebyshev

검색결과 32건 처리시간 0.025초

Size-dependent damped vibration and buckling analyses of bidirectional functionally graded solid circular nano-plate with arbitrary thickness variation

  • Heydari, Abbas
    • Structural Engineering and Mechanics
    • /
    • 제68권2호
    • /
    • pp.171-182
    • /
    • 2018
  • For the first time, nonlocal damped vibration and buckling analyses of arbitrary tapered bidirectional functionally graded solid circular nano-plate (BDFGSCNP) are presented by employing modified spectral Ritz method. The energy method based on Love-Kirchhoff plate theory assumptions is applied to derive neutral equilibrium equation. The Eringen's nonlocal continuum theory is taken into account to capture small-scale effects. The characteristic equations and corresponding first mode shapes are calculated by using a novel modified basis in spectral Ritz method. The modified basis is in terms of orthogonal shifted Chebyshev polynomials of the first kind to avoid employing adhesive functions in the spectral Ritz method. The fast convergence and compatibility with various conditions are advantages of the modified spectral Ritz method. A more accurate multivariable function is used to model two-directional variations of elasticity modulus and mass density. The effects of nanoscale, in-plane pre-load, distributed dashpot, arbitrary tapering, pinned and clamped boundary conditions on natural frequencies and buckling loads are investigated. Observing an excellent agreement between results of current work and outcomes of previously published works in literature, indicates the results' accuracy in current work.

A spent nuclear fuel source term calculation code BESNA with a new modified predictor-corrector scheme

  • Duy Long Ta ;Ser Gi Hong ;Dae Sik Yook
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4722-4730
    • /
    • 2022
  • This paper introduces a new point depletion-based source term calculation code named BESNA (Bateman Equation Solver for Nuclear Applications), which is aimed to estimate nuclide inventories and source terms from spent nuclear fuels. The BESNA code employs a new modified CE/CM (Constant Extrapolation - Constant Midpoint) predictor-corrector scheme in depletion calculations for improving computational efficiency. In this modified CE/CM scheme, the decay components leading to the large norm of the depletion matrix are excluded in the corrector, and hence the corrector calculation involves only the reaction components, which can be efficiently solved with the Talyor Expansion Method (TEM). The numerical test shows that the new scheme substantially reduces computing time without loss of accuracy in comparison with the conventional scheme using CRAM (Chebyshev Rational Approximation Method), especially when the substep calculations are applied. The depletion calculation and source term estimation capability of BESNA are verified and validated through several problems, where results from BESNA are compared with those calculated by other codes as well as measured data. The analysis results show the computational efficiency of the new modified scheme and the reliability of BESNA in both isotopic predictions and source term estimations.

수정된 이중 E-평면 구조를 이용한 MDR(Microwave Digital Relay)장비용 마이크로파대 협대역 도파관형 대역통과 여파기의 설계 (Design of the microwave narrow-band waveguide bandpass filters for MDR (Microwave Digital Relay) system using the modified double E-plane structures)

  • 임재봉;박준석
    • 전자공학회논문지A
    • /
    • 제32A권7호
    • /
    • pp.36-42
    • /
    • 1995
  • In this paper, the CAD program for designing the microwave waveguide narrow-band bandpass filters has been developed by the passband correction method with filter synthesis for the MDR(Microwave Digital Relay) system. Here, the modified double E-plane structures are employed in the filter structure which is analyzed by the variational method. Using the developed CAD program, 0.01dB equi-ripple chebyshev type 6-section bandpass filters used in the MDR system operating nationally is designed at the center frequency of 11.0GHz, fabricated with tunable type and then measured by tuning process. The experimantal results show good agreements with the theoretical results.

  • PDF

고조파 감쇠특성을 향상시킨 변형된 마이크로스트립 여파기 (Modified Microstrip Filters Improving the Suppression Performance of Harmonic Signals)

  • 김봉수;이재욱;송명선
    • 한국전자파학회논문지
    • /
    • 제13권10호
    • /
    • pp.1054-1060
    • /
    • 2002
  • 본 논문에서는 제 2차 고조파의 감쇠특성이 향상된 새로운 평행 결합선로 마이크로스트립 대역통과 여파기의 설계, 제작 및 특성에 관해서 소개한다. 결합선로에 연속적인 패턴을 사용함으로써 원하는 기본 통과대역의 특성을 향상시킴과 동시에 원하지 않는 고조파 통과대역은 제거한다. 또한 결합선로 사이의 간격, 마이크로스트립 선폭 및 길이와 같이 여파기 디자인을 위해 요구되는 매개변수의 복잡한 재계산이 필요하지 않다. 즉, 평행결합선로 마이크로스트립 여파기의 전통적인 디자인 방법으로 설계한 기본 구조에 규칙적인 변형을 주면서 손쉽게 구현할 수 있다. 이 새로운 여파기의 성능을 평가하기 위해 2.5 GHz에서 10 % 대역폭을 가지는 3차 Butterworth 대역통과 여파기와 10 GHz에서 15 % 대역폭을 가지는 5차 Chebyshev 대역통과 여파기가 사용됐다. 각각 5개와 3개의 정사각형 홈이 사용됐을 때 30 dB 이상의 고조파 감쇠가 발생하며 통과대역에서는 더 우수한 차단 특성이 있다.

S-대역 선형 배열 안테나의 급전 회로를 위한 스트립라인 10-출력 전력분배기 (A Stripline 10-Way Power Divider for the Feed Network of an S-band Linear Array Antenna)

  • 박일호;김락영;박정용;정명득;김동욱
    • 한국전자파학회논문지
    • /
    • 제20권3호
    • /
    • pp.280-288
    • /
    • 2009
  • 본 논문에서는 좁은 빔 특성을 가지고 35 dB 이상의 부엽 레벨(Side Lobe Level: SLL)을 가지는 Chebyshev 전류 분포의 선형 배열 안테나를 위한 고전력, 저손실의 스트립라인 10-출력 전력분배 기를 설계, 제작하였다. T-junction 전력분배기를 기본 구조로 하여 단위 셀을 설계하였고, 설계된 단위 셀을 결합하여 전체 전력분배기를 설계하였다. 설계 시 특성 개선을 위하여 다중 임피던스 변환기와 변형된 링 하이브리드 구조를 적용하였고 커넥터 구조의 변경을 통한 동축선로-스트립라인 천이 구조의 개선으로 반사 및 삽입 손실 특성을 개선하였다.

A Compact Lumped-Element Low-Pass Filter with Transmission Zeros

  • Lee, Byoung-Hwa;Park, Sang-Soo
    • Journal of electromagnetic engineering and science
    • /
    • 제3권1호
    • /
    • pp.35-38
    • /
    • 2003
  • In this paper, compact lumped-element low-pass filter structure with two transmission zeros at second and third harmonics is presented. The use of lumped-elements and transmission zeros can provide the advantages of compact size, sharp cutoff and wide stop-band frequency response. The proposed low-pass filter is a modified Chebyshev low-pass filter type and is implemented by the use of low temperature co-fired ceramic (LTCC) technology. This filter has been verified by both simulation and experiment. The simulated and experimental results agree very well.

A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads

  • Abdulrazzaq, Mohammed Abdulraoof;Kadhim, Zeyad D.;Faleh, Nadhim M.;Moustafa, Nader M.
    • Structural Monitoring and Maintenance
    • /
    • 제7권1호
    • /
    • pp.27-42
    • /
    • 2020
  • Dynamic stability of graded nonlocal nano-dimension plates on elastic substrate due to in-plane periodic loads has been researched via a novel 3- unknown plate theory based on exact position of neutral surface. Proposed theory confirms the shear deformation effects and contains lower field components in comparison to first order and refined 4- unknown plate theories. A modified power-law function has been utilized in order to express the porosity-dependent material coefficients. The equations of nanoplate have been represented in the context of Mathieu-Hill equations and Chebyshev-Ritz-Bolotin's approach has been performed to derive the stability boundaries. Detailed impacts of static/dynamic loading parameters, nonlocal constant, foundation parameters, material index and porosities on instability boundaries of graded nanoscale plates are researched.

전력계통의 TTC(Total Transfer Capability) 산정을 위한 수송능력평가 프로그램 향상 (Enhancement Power System Transfer Capability Program (PSTCP) To Calculate Total Transfer Capability in Power Systems)

  • 김상암;이병준;송길영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1514-1516
    • /
    • 1999
  • This paper presents a sequential framework that calculates the total transfer capabilities of power transmission systems. The proposed algorithm enhances the Power System Transfer Capability Program (PSTCP) in conjunction with the Continuation Power Flow(CPF) that is used for steady-state voltage stability analysis and modified Arnoldi-Chebyshev method that calculates rightmost eigenvalues for small signal stability analysis. The proposed algorithm is applied to IEEE 39-bus test system to calculate TTC.

  • PDF

Flexural-Torsional Coupled Vibration of Slewing Beams Using Various Types of Orthogonal Polynomials

  • Kapania Rakesh K.;Kim, Yong-Yook
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1790-1800
    • /
    • 2006
  • Dynamic behavior of flexural-torsional coupled vibration of rotating beams using the Rayleigh-Ritz method with orthogonal polynomials as basis functions is studied. Performance of various orthogonal polynomials is compared to each other in terms of their efficiency and accuracy in determining the required natural frequencies. Orthogonal polynomials and functions studied in the present work are: Legendre, Chebyshev, integrated Legendre, modified Duncan polynomials, the special trigonometric functions used in conjunction with Hermite cubics, and beam characteristic orthogonal polynomials. A total of 5 cases of beam boundary conditions and rotation are studied for their natural frequencies. The obtained natural frequencies and mode shapes are compared to those available in various references and the results for coupled flexural-torsional vibrations are especially compared to both previously available references and with those obtained using NASTRAN finite element package. Among all the examined orthogonal functions, Legendre orthogonal polynomials are the most efficient in overall CPU time, mainly because of ease in performing the integration required for determining the stiffness and mass matrices.

AN EFFICIENT ALGORITHM FOR EVALUATION OF OSCILLATORY INTEGRALS HAVING CAUCHY AND JACOBI TYPE SINGULARITY KERNELS

  • KAYIJUKA, IDRISSA;EGE, SERIFE M.;KONURALP, ALI;TOPAL, FATMA S.
    • Journal of applied mathematics & informatics
    • /
    • 제40권1_2호
    • /
    • pp.267-281
    • /
    • 2022
  • Herein, an algorithm for efficient evaluation of oscillatory Fourier-integrals with Jacobi-Cauchy type singularities is suggested. This method is based on the use of the traditional Clenshaw-Curtis (CC) algorithms in which the given function is approximated by the truncated Chebyshev series, term by term, and the oscillatory factor is approximated by using Bessel function of the first kind. Subsequently, the modified moments are computed efficiently using the numerical steepest descent method or special functions. Furthermore, Algorithm and programming code in MATHEMATICA® 9.0 are provided for the implementation of the method for automatic computation on a computer. Finally, selected numerical examples are given in support of our theoretical analysis.