Browse > Article
http://dx.doi.org/10.14317/jami.2022.267

AN EFFICIENT ALGORITHM FOR EVALUATION OF OSCILLATORY INTEGRALS HAVING CAUCHY AND JACOBI TYPE SINGULARITY KERNELS  

KAYIJUKA, IDRISSA (Department of Applied Statistics, University of Rwanda)
EGE, SERIFE M. (Department of Mathematics, Ege University)
KONURALP, ALI (Department of Mathematics, Manisa Celal Bayar University)
TOPAL, FATMA S. (Department of Mathematics, Ege University)
Publication Information
Journal of applied mathematics & informatics / v.40, no.1_2, 2022 , pp. 267-281 More about this Journal
Abstract
Herein, an algorithm for efficient evaluation of oscillatory Fourier-integrals with Jacobi-Cauchy type singularities is suggested. This method is based on the use of the traditional Clenshaw-Curtis (CC) algorithms in which the given function is approximated by the truncated Chebyshev series, term by term, and the oscillatory factor is approximated by using Bessel function of the first kind. Subsequently, the modified moments are computed efficiently using the numerical steepest descent method or special functions. Furthermore, Algorithm and programming code in MATHEMATICA® 9.0 are provided for the implementation of the method for automatic computation on a computer. Finally, selected numerical examples are given in support of our theoretical analysis.
Keywords
Highly oscillatory integrals; algebraic singularities; Cauchy-type integral; steepest descent method; Clenshaw-Curtis methods;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. Piessens and M. Branders, The evaluation and application of some modified moments, BIT, 13 (1973) 443-450.   DOI
2 H. Kang, S. Xiang, and G. He, Computation of integrals with oscillatory and singular integrands using Chebyshev expansions, J. Comput. Appl. Math. 242 (2013), 141-156.   DOI
3 R. Chen, Fast computation of a class of highly oscillatory integrals, Appl. Math. Comput. 227 (2014), 494-501.   DOI
4 I. Kayijuka, J.P. Ndabakuranye, and A.I. Hascelik, Computational efficiency of singular and oscillatory integrals with algebraic singularities, Asian J. Math. Comput. Res. 25 (2018), 285-302.
5 H. Wang and S. Xiang, Uniform approximations to Cauchy principal value integrals of oscillatory functions, Appl. Math. Comput. 215 (2009), 1886-1894.   DOI
6 P.K. Kythe and M.R. Schaferkotter, Handbook of computational method for integration, Chapman & Hall/CRC, ISBN-13: 978-1584884286, New York, 2004.
7 S. Lu, A Class of Oscillatory Singular Integrals Boundedness, Int. J. Appl. Math. Sci. 2 (2005), 47-64.
8 W. Sun and N.G. Zamani, Adaptive mesh redistribution for the boundary element in elastostatics, Comput. Struct. 36 (1990), 1081-1088.   DOI
9 L.N.G. Filon, On a Quadrature Formula for Trigonometric Integrals, Proc. R. Soc. Edinburgh, 1930.
10 H. Brunner, Open problems in the computational solution of Volterra functional equations with highly oscillatory kernels, Isaac Newt. Institute, HOP 2007, 1-14.
11 V. Dominguez, Filon-Clenshaw-Curtis rules for a class of highly-oscillatory integrals with logarithmic singularities, J. Comput. Appl. Math. 261 (2014), 299-319.   DOI
12 M.R. Capobianco and G. Criscuolo, On quadrature for Cauchy principal value integrals of oscillatory functions, 156 (2003), 471-486.   DOI
13 F.G. RICOMI, On the finite Hilbert transformation, Quarterly J. Math. 2 (1951), 199-211.   DOI
14 F.B. Hildebrand, Introduction to Numerical Analysis, 2nd Ed., Dover Publication Inc., New york, 2003.
15 H. Kang and X. Shao, Fast computation of singular oscillatory fourier transforms, Abstr. Appl. Anal. 1 (2014), 1-8.   DOI
16 S. Olver, Moment-free numerical approximation of highly oscillatory integrals with stationary points, Eur. J. Appl. Math. 18 (2007), 435-447.   DOI
17 A. Erdelyi, Asymptotic representations of Fourier integrals and the method of stationary phase, J. Soc. Indust. Appl. Math. 3 (1955), 17-27.   DOI
18 G.B. Arfken, Mathematical Methods For Physicists, Sixth Edit., Elsevier Inc., 2005.
19 H. Brunner, On the numerical solution of first-kind Volterra integral equations with highly oscillatory kernels, Isaac Newton Institute, HOP 2010.
20 L.N. Trefethen, Is Gauss quadrature better than Clenshaw-Curtis, SIAM Rev. 50 (2008), 67-87.   DOI
21 D. Huybrechs and S. Vandewalle, On the evaluation of highly oscillatory integrals by analytic continuation, SIAM J. Numer. Anal. 44 (2006), 1026-1048.   DOI
22 J.W. Cooley and J.W. Tukey, An Algorithm for the Machine Calculation of Complex Fourier Series, Math. Comput. 19 (1965), 297-301.   DOI
23 Idrissa Kayijuka, Serife Muge Ege, Ali Konuralp and Fatma Serap Topal, Clenshaw-Curtis algorithms for an efficient numerical approximation of singular and highly oscillatory Fourier transform integrals, J. Comput. App. Math. 385 (2021), no:113201.
24 J.C. Mason and E. Venturino, Integration Methods of Clenshaw-Curtis Type, Based on Four Kinds of Chebyshev Polynomials, Multivar. Approx. Splines, Birkhause, Bessel, 1996.
25 C.W. Clenshaw and A.R. Curtis, A method for numerical integration on an automatic computer, Numer. Math. 2 (1960), 197-205.   DOI
26 M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, Washington DC, 1964.
27 P.J. Davis and P. Rabinowitz, Methods of Numerical Integration, second ed., Academic Press, Orland, FL, 1984.
28 H. Takemitsu and T. Tatsuo, An automatic quadrature for Cauchy Principal Value integrals, Math. Comp. 56 (1994), 741-754.   DOI
29 M.A. Hamed and B. Cummins, A numerical integration formula for the solution of the singular integral equation for classical crack problems in plane and antiplane elasticity, J. King Saud Un. 3 (1991) 217-230.
30 J.C. Mason and D.C. Handscomb, Chebyshev Polynomials, A CRC Press Company, 2003.
31 Idrissa Kayijuka, Suliman Alfaqeih and Turgut Ozis, Application of the Cauchy integral approach to Singular and Highly Oscillatory Integrals, Int. J. Comp. Math. 98 (2021), 2097-2114.   DOI
32 G. Criscuolo, A new algorithm for Cauchy principal value and Hadmard finit-part integrals, J. Comput. Appl. Math. 78 (1997), 255-275.   DOI