• 제목/요약/키워드: modern biotechnology

검색결과 118건 처리시간 0.027초

Identification and functional prediction of long non-coding RNAs related to skeletal muscle development in Duroc pigs

  • Ma, Lixia;Qin, Ming;Zhang, Yulun;Xue, Hui;Li, Shiyin;Chen, Wei;Zeng, Yongqing
    • Animal Bioscience
    • /
    • 제35권10호
    • /
    • pp.1512-1523
    • /
    • 2022
  • Objective: The growth of pigs involves multiple regulatory mechanisms, and modern molecular breeding techniques can be used to understand the skeletal muscle growth and development to promote the selection process of pigs. This study aims to explore candidate lncRNAs and mRNAs related to skeletal muscle growth and development among Duroc pigs with different average daily gain (ADG). Methods: A total of 8 pigs were selected and divided into two groups: H group (high-ADG) and L group (low-ADG). And followed by whole transcriptome sequencing to identify differentially expressed (DE) lncRNAs and mRNAs. Results: In RNA-seq, 703 DE mRNAs (263 up-regulated and 440 down-regulated) and 74 DE lncRNAs (45 up-regulated and 29 down-regulated) were identified. In addition, 1,418 Transcription factors (TFs) were found. Compared with mRNAs, lncRNAs had fewer exons, shorter transcript length and open reading frame length. DE mRNAs and DE lncRNAs can form 417 lncRNA-mRNA pairs (antisense, cis and trans). DE mRNAs and target genes of lncRNAs were enriched in cellular processes, biological regulation, and regulation of biological processes. In addition, quantitative trait locus (QTL) analysis was used to detect the functions of DE mRNAs and lncRNAs, the most of DE mRNAs and target genes of lncRNAs were enriched in QTLs related to growth traits and skeletal muscle development. In single-nucleotide polymorphism/insertion-deletion (SNP/INDEL) analysis, 1,081,182 SNP and 131,721 INDEL were found, and transition was more than transversion. Over 60% of percentage were skipped exon events among alternative splicing events. Conclusion: The results showed that different ADG among Duroc pigs with the same diet maybe due to the DE mRNAs and DE lncRNAs related to skeletal muscle growth and development.

고분자 전해질막 수전해의 산화 전극용 귀금속 촉매의 연구 동향 (Research Trend on Precious Metal-Based Catalysts for the Anode in Polymer Electrolyte Membrane Water Splitting)

  • 부종찬;정원석;임다빈;심유진;조현석
    • 전기화학회지
    • /
    • 제25권4호
    • /
    • pp.154-161
    • /
    • 2022
  • 전세계의 기후 온난화로 인해 탄소 중립 사회의 중요성이 대두되고 있다. 이를 위해 화석연료를 대체할 새로운 에너지 자원으로 수소에 대한 관심이 커지고 있다. 친환경적이며 풍부하게 존재하는 물의 전기분해를 통한 수소 생산은 매우 중요한 분야이다. 하지만 전기분해의 산소 발생 반응의 경우 매우 높은 과전압과 고가의 귀금속 촉매의 사용이 상용화에 걸림돌로 작용하고 있다. 이에 본 총설에서 최근 5년동안 발표된 고분자 전해질막 수전해 시스템의 산소 발생 반응에 쓰이는 귀금속 촉매의 연구 동향에 대해 요약 및 정리하였다. 가장 널리 사용되는 귀금속 촉매로는 Ir과 Ru 기반의 촉매들이다. 이들은 높은 안정성과 성능 때문에 수전해 촉매로 연구되었다. 하지만 높은 가격으로 인해 성능 향상이 우선 과제이며 이를 위해 지지체와의 상호작용, 합금 촉매, 다양한 후처리 공정 등을 적용하고 있다. 본 총설은 귀금속 촉매의 산소 발생 반응에 대한 활성과 내구성을 높이는 전략 수립에 도움이 될 것으로 예상한다.

Next Generation Dairy Processing Science and Technology: Functional and Rational in Dairy Industry

  • Charchoghlyan, Haykuhi
    • Journal of Dairy Science and Biotechnology
    • /
    • 제33권3호
    • /
    • pp.167-170
    • /
    • 2015
  • The dairy industry, as part of the broader agricultural sector, is classified as a basic industry to the Korea economy. Basic industries provide income to a region by producing an output, purchasing production inputs, services and labor. An integrated, multidisciplinary approach for the next generation of dairy products with added health benefits represent the direct economic contribution. The commercialization of "nutritional" functional foods can only be successful if the consumer is confident in the scientific validity of the claims. Modern biotechnologies such as genomics, genetic expression and biomarkers of health performance suggested to whole dairy products, such as fluid milk, butter, cheese, ice cream and frozen dessert products (German, 1999). The following definition makes the point that dairy products can provide a nutritional value beyond the basic nutritional requirements: 1) The dairy industry has the opportunity to improve the health and well-being of its customers and/or to reduce their risk of disease through dairy products with added activities. 2) Functional dairy products are those that can be demonstrated to benefit target functions in the body in a way that improves the state of health and /or reduces the risk of disease. They are food products that are consumed as part of a normal diet rather than pills or supplements. 3) Dairy products based on functionality will need to link the scientific basis of such functionality to the communication of its benefit to the general public. 4) Both the efficacy and the safety of the food components with health benefits will require evidence based on the measurement of scientific biomarkers relevant to their biological responses and health end points. 5) Sound evidence from human studies based on intermediate health end points using accepted biomarkers will provide the basis for promotional messages divided into two categories-enhanced function and reduced risk of disease. 6) Success in solving key scientific and technological challenges will only be achieved by interdisciplinary research programs to exploit the scientific concepts in functional dairy science.

  • PDF

Isolation of Antifungal Compound and Biocontrol Potential of Lysobacter antibioticus HS124 against Fusarium Crown Rot of Wheat

  • Monkhung, Sararat;Kim, Yun-Tae;Lee, Yong-Seong;Cho, Jeong-Yong;Moon, Jae-Hak;Kim, Kil-Yong
    • 한국토양비료학회지
    • /
    • 제49권4호
    • /
    • pp.393-400
    • /
    • 2016
  • Fusarium graminearum is the main cause of substantial economic loss in wheat production. The aim of this study is to investigate biocontrol potential of Lysobacter antibioticus HS124 against F. graminearum and to purify an antifungal compound. In preliminary study, n-butanol crude extract revealed destructive alterations in the hyphal morphology of F. graminearum and almost degraded with $1,000{\mu}g\;mL^{-1}$ concentration. For further study, the antifungal compound extracted from the n-butanol crude extract of L. antibioticus HS124 was identified as N-Butyl-tetrahydro-5-oxofuran-2-carboxamide ($C_9H_{16}NO_3$) using NMR ($^1H-NMR$, $^{13}C-NMR$, $^1H-^1H\;COSY$, HMBC, and HMQC), and HR-ESI-MS analysis. To our knowledge, N-Butyl-tetrahydro-5-oxofuran-2-carboxamide may be a novel compound with molecular weight of 186.1130. The minimum inhibitory concentration value of antifungal compound was $62.5{\mu}g\;mL^{-1}$ against F. graminearum. In an in vivo pot experiment, crown rot disease from F. graminearum was inhibited when wheat seeds were treated with both HS124 culture and F. graminearum. Growth of wheat seedling was enhanced by treatment of HS124 compared to control. Our results suggest that L. antibioticus HS124 characterized in this study could be successfully used to control F. graminearum and could be used as an alternative to chemical fungicides in modern agriculture.

Inoculation with Indole-3-Acetic Acid-Producing Rhizospheric Rhodobacter sphaeroides KE149 Augments Growth of Adzuki Bean Plants Under Water Stress

  • Kang, Sang-Mo;Adhikari, Arjun;Lee, Ko-Eun;Khan, Muhammad Aaqil;Khan, Abdul Latif;Shahzad, Raheem;Dhungana, Sanjeev Kumar;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권5호
    • /
    • pp.717-725
    • /
    • 2020
  • The use of plant growth-promoting rhizobacteria is economically viable and environmentally safe for mitigating various plant stresses. Abiotic stresses such as flood and drought are a serious threat to modern agriculture. In the present study, the indole-3-acetic acid-producing rhizobacterium R. sphaeroides KE149 was selected, and its effects on the growth of adzuki bean plants under flood stress (FS) and drought stress (DS) were investigated. IAA quantification of bacterial pure culture revealed that KE149 produced a significant amount of IAA. Moreover, KE149 inoculation notably decreased stress-responsive endogenous abscisic acid and jasmonic acid and increased salicylic acid in plants under DS and FS. KE149 inoculation also increased proline under DS and methionine under FS. In addition, KE149 inoculation significantly increased the levels of calcium (Ca), magnesium (Mg), and potassium (K) while lowering the sodium (Na) content in the plant shoot under stress. KE149-treated plants had markedly greater root length, shoot length, stem diameter, biomass, and higher chlorophyll content under both normal and stressed conditions. These results suggest that KE149 could be an efficient biofertilizer for mitigating water stress.

Auraptene Inhibits Migration and Invasion of Cervical and Ovarian Cancer Cells by Repression of Matrix Metalloproteinasas 2 and 9 Activity

  • Jamialahmadi, Khadijeh;Salari, Sofia;Alamolhodaei, Nafiseh Sadat;Avan, Amir;Gholami, Leila;Karimi, Gholamreza
    • 대한약침학회지
    • /
    • 제21권3호
    • /
    • pp.177-184
    • /
    • 2018
  • Objectives: Auraptene, a natural citrus coumarin, found in plants of Rutaceae and Apiaceae families. In this study, we investigated the effects of auraptene on tumor migration, invasion and matrix metalloproteinase (MMP)-2 and -9 enzymes activity. Methods: The effects of auraptene on the viability of A2780 and Hela cell lines was evaluated by MTT assay. Wound healing migration assay and Boyden chamber assay were determined the effect of auraptene on migration and cell invasion, respectively. MMP-2 and MMP-9 activities were analyzed by gelatin zymography assay. Results: Auraptene reduced A2780 cell viability. The results showed that auraptene inhibited in vitro migration and invasion of both cells. Furthermore, cell invasion ability suppressed at $100{\mu}M$ auraptene in Hela cells and at 25, $50{\mu}M$ in A2780 cell line. Gelatin zymography showed that for Hela cell line, auraptene suppressed MMP-2 enzymatic activity in all concentrations and for MMP-9 at a concentration between 12.5 to $100{\mu}M$ in A2780 cell line. Conclusion: Auraptene inhibited migration and invasion of human cervical and ovarian cancer cells in vitro by possibly inhibitory effects on MMP-2 and MMP-9 activity.

Evidence to Support the Therapeutic Potential of Bacteriophage Kpn5 in Burn Wound Infection Caused by Klebsiella pneumoniae in BALB/c Mice

  • Kumar, Seema;Harja, Kusum;Chhibber, Sanjay
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권5호
    • /
    • pp.935-941
    • /
    • 2010
  • The emergence of antibiotic-resistant bacterial strains is one of the most critical problems of modern medicine. Bacteriophages have been suggested as an alternative therapeutic agent for such bacterial infections. In the present study, we examined the therapeutic potential of phage Kpn5 in the treatment of Klebsiella pneumoniae B5055-induced burn wound infection in a mouse model. An experimental model of contact burn wound infection was established in mice employing K. pneumoniae B5055 to assess the efficacy of phage Kpn5 in vivo. Survival and stability of phage Kpn5 were evaluated in mice and the maximum phage count in various organs was obtained at 6 h and persisted until 36 h. The Kpn5 phage was found to be effective in the treatment of Klebsiella-induced burn wound infection in mice when phage was administered immediately after bacterial challange. Even when treatment was delayed up to 18 h post infection, when all animals were moribund, approximately 26.66% of the mice could be rescued by a single injection of this phage preparation. The ability of this phage to protect bacteremic mice was demonstrated to be due to the functional capabilities of the phage and not due to a nonspecific immune effect. The levels of pro-inflammatory cytokines (IL-$1{\beta}$ and TNF-${\alpha}$) and anti-inflammatory cytokines (IL-10) were significantly lower in sera and lungs of phage-treated mice than phage untreated control mice. The results of the present study bring out the potential of bacteriophage therapy as an alternate preventive approach to treat K. pneumoniae B5055-induced burn wound infections. This approach not only helps in the clearance of bacteria from the host but also protects against the ensuing inflammatory damage due to the exaggerated response seen in any infectious process.

Phylogenetic Analysis by RFLP and Sequencing of Mitochondrial DNA in a Korean Population

  • Lee, Jin-Young;Kim, Heui-Soo;Ha, Bae-Jin;Park, Yeong-Hong
    • Archives of Pharmacal Research
    • /
    • 제29권1호
    • /
    • pp.88-95
    • /
    • 2006
  • Analysis of molecular nature of mitochondrial DNA (mtDNA) could be powerful marker for anthropological studies of modern populations. While population genetic studies on mtDNA have been reported for several ethnic groups, no such study has been documented for the Korean population. We surveyed mtDNA polymorphisms in the HVS I of noncoding D-loop region and its upstream region from 430 unrelated healthy Korean population by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and direct sequencing analysis. PCR product with 2,790 bp spanning the specific mtDNA region (mt13715-16504) was subjected to RFLP analysis using 6 restriction enzyme (Hinf I, Hae III, Alu I, Dde I, Mbo I, Rsa I). On the PAUP analysis of PCR-RFLP results, 38 mtDNA haplotypes (Hap 1-38) were detected in the Korean populations, which were classified into 11 haplogroups (Grp 1-11) of related haplotypes encompassing all 38 haplotypes. In comparison of sequencing data with Anderson's reference sequence, the transition type was more prevalent than the transversion type. Insertions or deletions were not found. In addition, three of the polymorphic sites (A16240C, A16351G, G16384A) in HVS-I region are determined newly. The polymorphic sites were distributed randomly in the region, though the frequency at each site was variable. Thus, this research might be required for the genealogical study of Orientals.

Green Synthesis to Develop Iron-Nano Formulations and Its Toxicity Assays

  • Kulkarni, Smital;Mohanty, Nimain;Kadam, Nitin N.;Swain, Niharika;Thakur, Mansee
    • 대한약침학회지
    • /
    • 제23권3호
    • /
    • pp.165-172
    • /
    • 2020
  • Objectives: In the past few years, herbal medicines have gained popularity over synthetic drugs because of their natural source and minimal side effects which has led to a tremendous growth of phytopharmaceuticals usage. With the development of nanotechnology, it provides alternative approaches to overcome several limitations using nano-formulations. In spite of considerable quantity of antianemic preparations with different iron forms available, currently additives are used and represented in modern pharmaceutical market. Iron deficiency anemia is a major global public health problem which particularly affects pregnant women, children and elderly persons. The situation is complicated because of disadvantages and drug side effects from existing antianemic medicines. There is a great demand for the development of new antianemic preparations. Green synthesis of iron oxide nanoparticles, possess high potential in this field. Methods: Our study focuses on developing green synthesis of iron oxide nanoparticles (IONPs) of 10-50 nm with spherical shape where different dosages were used -1 mg/kg, 10 mg/kg and 100 mg/kg for exposure in Wistar albino female rats for 28 days. The toxicity was assessed using various parameters such as measurements of the rat body and organ mass, hematology, biochemical evaluation and histopathological examinations. Results: No significant differences were observed in body and organ weights. Hematological indices also indicated no significant differences whereas biochemical factors showed increase in levels of direct bilirubin and globulin of medium as well as high dose and SGPT levels were increased only in high dose. The major organs (heart, kidney and liver) showed histopathological alterations in 10 and 100 mg/kg whereas brain showed only in 100 mg/kg. Conclusion: The toxicity of IONPs was found to be more significant when the concentration was increased; however, low doses can be used for further investigation as an antianemic preparation.

Characterization of Hibiscus Latent Fort Pierce Virus-Derived siRNAs in Infected Hibiscus rosa-sinensis in China

  • Lan, Han-hong;Lu, Luan-mei
    • The Plant Pathology Journal
    • /
    • 제36권6호
    • /
    • pp.618-627
    • /
    • 2020
  • Although limited progress have been made about pathogen system of Hibiscus rosa-sinensis and Hibiscus latent Fort Pierce virus (HLFPV), interaction between plant host and pathogen remain largely unknown, which led to deficiency of effective measures to control disease of hibiscus plants caused by HLFPV. In this study, infection of HLFPV in Hibiscus rosa-sinensis was firstly confirmed for the first time by traditional electron microscopy, modern reverse transcription polymerase chain reaction and RNA-seq methods in China (HLFPV-Ch). Sequence properties analyzing suggested that the full-length sequences (6,465 nt) of HLFPV-Ch had a high sequence identity and a similar genomic structure with other tobamoviruses. It includes a 5'-terminal untranslated region (UTR), followed by four open reading frames encoding for a 128.5-kDa replicase, a 186.5-kDa polymerase, a 31-kDa movement protein, 17.6-kDa coat protein, and the last a 3'-terminal UTR. Furthermore, HLFPV-Ch-derived virus-derived siRNAs (vsiRNAs) ant its putative target genes, reported also for the first time, were identified and characterized from disease Hibiscus rosa-sinensis through sRNA-seq and Patmatch server to investigate the interaction in this pathogen systems. HLFPV-Ch-derived vsiRNAs demonstrated several general and specific characteristics. Gene Ontology classification revealed predicted target genes by vsiRNAs are involved in abroad range of cellular component, molecular function and biological processes. Taken together, for first time, our results certified the HLFPV infection in China and provide an insight into interaction between HLFPV and Hibiscus rosa-sinensis.