Identification and functional prediction of long non-coding RNAs related to skeletal muscle development in Duroc pigs |
Ma, Lixia
(Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University)
Qin, Ming (Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University) Zhang, Yulun (Shandong Ding Tai Animal Husbandry Co. Ltd.) Xue, Hui (Shandong Ding Tai Animal Husbandry Co. Ltd.) Li, Shiyin (Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University) Chen, Wei (Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University) Zeng, Yongqing (Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University) |
1 | Sebastian S, Faralli H, Yao Z, et al. Tissue-specific splicing of a ubiquitously expressed transcription factor is essential for muscle differentiation. Genes Dev 2013;27:1247-59. https://doi.org/10.1101/gad.215400.113 DOI |
2 | Hao Y, Feng Y, Yang P, et al. Transcriptome analysis reveals that constant heat stress modifies the metabolism and structure of the porcine longissimus dorsi skeletal muscle. Mol Genet Genomics 2016;291:2101-15. https://doi.org/10.1007/s00438-016-1242-8 DOI |
3 | Gennarelli M, Lucarelli M, Zelano G, Pizzuti A, Novelli G, Dallapiccola B. Different expression of the myotonin protein kinase gene in discrete areas of human brain. Biochem Biophys Res Commun 1995;216:489-94. https://doi.org/10.1006/bbrc.1995.2649 DOI |
4 | Yu J, Zhao P, Zheng X, Zhou L, Wang C, Liu JF. Genomewide detection of selection signatures in duroc revealed candidate genes relating to growth and meat quality. G3 (Bethesda) 2020;10:3765-73. https://doi.org/10.1534/g3.120.401628 DOI |
5 | Chen S, Zhou Y, Chen Y, Gu J. Fastp: An ultra-fast all-inone FASTQ preprocessor. Bioinformatics 2018;34:i884-90. https://doi.org/10.1093/bioinformatics/bty560 DOI |
6 | Kim D, Langmead B, Salzberg SL. HISAT: A fast spliced aligner with low memory requirements. Nat Methods 2015; 12:357-60. https://doi.org/10.1038/nmeth.3317 DOI |
7 | Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008;36:D480-4. https://doi.org/10.1093/nar/gkm882 DOI |
8 | Wu Y, Wei B, Liu H, Li T, Rayner S. MiRPara: A SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences. BMC Bioinformatics 2011;12:107. https://doi.org/10.1186/1471-2105-12-107 DOI |
9 | Ramaswami G, Zhang R, Piskol R, et al. Identifying RNA editing sites using RNA sequencing data alone. Nat Methods 2013;10:128-32. https://doi.org/10.1038/nmeth.2330 DOI |
10 | Ma M, Cai B, Jiang L, et al. LncRNA-Six1 is a target of miR-1611 that functions as a ceRNA to regulate six1 protein expression and fiber type switching in chicken myogenesis. Cells-Basel 2018;7:243. https://doi.org/10.3390/cells7120243 DOI |
11 | Wang L, Zhao Y, Bao X, et al. LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Res 2015;25:335-50. https://doi.org/10.1038/cr.2015.21 DOI |
12 | Li Y, Chen X, Sun H, Wang H. Long non-coding RNAs in the regulation of skeletal myogenesis and muscle diseases. Cancer Lett 2018;417:58-64. https://doi.org/10.1016/j.canlet.2017.12.015 DOI |
13 | Luo W, Chen J, Li L, et al. C-Myc inhibits myoblast differentiation and promotes myoblast proliferation and muscle fibre hypertrophy by regulating the expression of its target genes, miRNAs and lincRNAs. Cell Death Differ 2019;26: 426-42. https://doi.org/10.1038/s41418-018-0129-0 DOI |
14 | Li R, Li B, Jiang A, et al. Exploring the lncRNAs related to skeletal muscle fiber types and meat quality traits in pigs. Genes (Basel) 2020;11:883. https://doi.org/10.3390/genes11080883 DOI |
15 | Midwood KS, Chiquet M, Tucker RP, Orend G. Tenascin-C at a glance. J Cell Sci 2016;129:4321-7. https://doi.org/10.1242/jcs.190546 DOI |
16 | Zhou M, Li M, Liang X, et al. The significance of serum S100A9 and TNC levels as biomarkers in colorectal cancer. J Cancer 2019;10:5315-23. https://doi.org/10.7150/jca.31267 DOI |
17 | Simionescu-Bankston A, Kumar A. Noncoding RNAs in the regulation of skeletal muscle biology in health and disease. J Mol Med (Berl) 2016;94:853-66. https://doi.org/10.1007/s00109-016-1443-y DOI |
18 | Shen S, Park JW, Lu Z, et al. RMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci USA 2014;111(51):E5593-601. |
19 | Zhang M, Zhu B, Davie J. Alternative splicing of MEF2C pre-mRNA controls its activity in normal myogenesis and promotes tumorigenicity in rhabdomyosarcoma cells. J Biol Chem 2015;290:310-24. https://doi.org/10.1074/jbc.M114.606277 DOI |
20 | Li Y, Chen X, Sun H, Wang H. Long non-coding RNAs in the regulation of skeletal myogenesis and muscle diseases. Cancer Lett 2018;417:58-64. https://doi.org/10.1016/j.canlet.2017.12.015 DOI |
21 | Liu H, Xi Y, Liu G, Zhao Y, Li J, Lei M. Comparative transcriptomic analysis of skeletal muscle tissue during prenatal stages in Tongcheng and Yorkshire pig using RNA-seq. Funct Integr Genomics 2018;18:195-209. https://doi.org/10.1007/s10142-017-0584-6 DOI |
22 | Gu H, Li J, Ying F, Zuo B, Xu Z. Analysis of differential gene expression of the transgenic pig with overexpression of PGC1alpha in muscle. Mol Biol Rep 2019;46:3427-35. https://doi.org/10.1007/s11033-019-04805-8 DOI |
23 | Tafer H, Hofacker IL. RNAplex: A fast tool for RNA-RNA interaction search. Bioinformatics 2008;24:2657-63. https://doi.org/10.1093/bioinformatics/btn193 DOI |
24 | Bunch H, Lawney BP, Burkholder A, et al. RNA polymerase II promoter-proximal pausing in mammalian long non-coding genes. Genomics 2016;108:64-77. https://doi.org/10.1016/j.ygeno.2016.07.003 DOI |
25 | Cabili MN, Trapnell C, Goff L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 2011;25:1915-27. https://doi.org/10.1101/gad.17446611 DOI |
26 | Li Y, Yuan J, Chen F, et al. Long noncoding RNA SAM promotes myoblast proliferation through stabilizing Sugt1 and facilitating kinetochore assembly. Nat Commun 2020;11: 2725. https://doi.org/10.1038/s41467-020-16553-6 DOI |
27 | Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol 2017; 72:19-32. https://doi.org/10.1016/j.semcdb.2017.11.011 DOI |
28 | Cai B, Li Z, Ma M, et al. LncRNA-Six1 encodes a micropeptide to activate six1 in cis and is involved in cell proliferation and muscle growth. Front Physiol 2017;8:230. https://doi.org/10.3389/fphys.2017.00230 DOI |
29 | Li D, Huang M, Zhuang Z, et al. Genomic analyses revealed the genetic difference and potential selection genes of growth traits in two duroc lines. Front Vet Sci 2021;8:725367. https://doi.org/10.3389/fvets.2021.725367 DOI |
30 | Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9:357-9. https://doi.org/10.1038/nmeth.1923 DOI |
31 | Lorenz R, Bernhart SH, Honer zu Siederdissen C, et al. Vienna RNA Package 2.0. Algorithms Mol Biol 2011;6:26. https://doi.org/10.1186/1748-7188-6-26 DOI |
32 | Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010;38:e164. https://doi.org/10.1093/nar/gkq603 DOI |
33 | Bahn JH, Lee JH, Li G, Greer C, Peng G, Xiao X. Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res 2012;22:142-50. https://doi.org/10.1101/gr.124107.111 DOI |
34 | Sun JY, Zhu ZR, Wang H, et al. Knockdown of UACA inhibitsproliferation and invasion and promotes senescence of hepatocellular carcinoma cells. Int J Clin Exp Pathol 2018; 11:4666-75. |
35 | Der-Auwera GAV, Carneiro MO, Hartl C, Poplin R, Thibault J. From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics 2013;43:11.10.1-11.10.33. https://doi.org/10.1002/0471250953.bi1110s43 DOI |
36 | Lam MT, Li W, Rosenfeld MG, Glass CK. Enhancer RNAs and regulated transcriptional programs. Trends Biochem Sci 2014;39:170-82. https://doi.org/10.1016/j.tibs.2014.02.007 DOI |
37 | Chen LL. Linking long noncoding RNA localization and function. Trends Biochem Sci 2016;41:761-72. https://doi.org/10.1016/j.tibs.2016.07.003 DOI |
38 | Yotsukura S, Duverle D, Hancock T, Natsume-Kitatani Y, Mamitsuka H. Computational recognition for long noncoding RNA (lncRNA): Software and databases. Brief Bioinform 2017;18:9-27. https://doi.org/10.1093/bib/bbv114 DOI |
39 | Jin W, Liu M, Peng J, Jiang S. Function analysis of Mef2c promoter in muscle differentiation. Biotechnol Appl Biochem 2017;64:647-56. https://doi.org/10.1002/bab.1524 DOI |
40 | Yoshida T, Akatsuka T, Imanaka-Yoshida K. Tenascin-C and integrins in cancer. Cell Adh Migr 2015;9:96-104. https://doi.org/10.1080/19336918.2015.1008332 DOI |
41 | Tomida T, Adachi-Akahane S. Roles of p38 MAPK signaling in the skeletal muscle formation, regeneration, and pathology. Nihon Yakurigaku Zasshi 2020;155:241-7. https://doi.org/10.1254/fpj20030 DOI |
42 | Kumar A, Xie L, Ta CM, et al. SWELL1 regulates skeletal muscle cell size, intracellular signaling, adiposity and glucose metabolism. Elife 2020;9:e58941. https://doi.org/10.7554/eLife.58941 DOI |
43 | Sarah, Djebali, Carrie, A., Davis, Angelika, et al. Landscape of transcription in human cells. Nature 2012;489:101-8. DOI |
44 | Shanshan W, Jianjun J, Zaiyan X, Bo Z. Functions and regulatory mechanisms of lncRNAs in skeletal myogenesis, muscle disease and meat production. Cells-Basel 2019;8:107. https://doi.org/10.3390/cells8091107 DOI |
45 | Zhou Y, Liu S, Hu Y, et al. Comparative whole genome DNA methylation profiling across cattle tissues reveals global and tissue-specific methylation patterns. BMC Biol 2020;18:85. https://doi.org/10.1186/s12915-020-00793-5 DOI |
46 | Zillikens MC, Demissie S, Hsu YH, et al. Large meta-analysis of genome-wide association studies identifies five loci for lean body mass. Nat Commun 2017;8:80. https://doi.org/10.1038/s41467-017-00031-7 DOI |
47 | Aphasizhev R. RNA and DNA editing: methods and protocols. (Chapter 11):171-84. Humana Press; 2011. |
48 | Maas S, Kawahara Y, Tamburro KM, Nishikura K. A-to-I RNA editing and human disease. RNA Biol 2006;3:1-9. DOI |
49 | Jin CF, Li Y, Ding XB, et al. Lnc133b, a novel, long non-coding RNA, regulates bovine skeletal muscle satellite cell proliferation and differentiation by mediating miR-133b. Gene 2017; 630:35-43. https://doi.org/10.1016/j.gene.2017.07.066 DOI |