• Title/Summary/Keyword: model-based compensation

Search Result 525, Processing Time 0.027 seconds

Numerical Analysis of Si-based Photovoltaic Modules with Different Interconnection Methods

  • Park, Chihong;Yoon, Nari;Min, Yong-Ki;Ko, Jae-Woo;Lim, Jong-Rok;Jang, Dong-Sik;Ahn, Jae-Hyun;Ahn, Hyungkeun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.103-111
    • /
    • 2014
  • This paper investigates the output powers of PV modules by predicting three unknown parameters: reverse saturation current, and series and shunt resistances. A theoretical model using the non-uniform physical parameters of solar cells, including the temperature coefficients, voltage, current, series and shunt resistances, is proposed to obtain the I-V characteristics of PV modules. The solar irradiation effect is included in the model to improve the accuracy of the output power. Analytical and Newton methods are implemented in MATLAB to calculate a module output. Experimental data of the non-uniform solar cells for both serial and parallel connections are used to extend the implementation of the model based on the I-V equation of the equivalent circuit of the cells and to extend the application of the model to m by n modules configuration. Moreover, the theoretical model incorporates, for the first time, the variations of series and shunt resistances, reverse saturation current and irradiation for easy implementation in real power generation. Finally, this model can be useful in predicting the degradation of a PV system because of evaluating the variations of series and shunt resistances, which are critical in the reliability analysis of PV power generation.

Preliminary CFD Results of a Dual Bell Nozzle based on the KSLV-II (한국형발사체를 기반으로 한 듀얼 벨 노즐의 전산수치해석 기초 결과)

  • Kim, Jeonghoon;Choi, Junsub;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.18-28
    • /
    • 2016
  • Numerical analysis was conducted as a preliminary study for evaluating the dual bell nozzle. For future parametric studies, a dual bell nozzle was designed, and thereafter inlet condition, turbulence model, and the number of optimum grids were determined. Dual bell nozzle was designed based on the KSLV-II first stage nozzle. Inlet condition was determined to frozen flow model of non-reacting eight species by comparing with the design values. SST $k-{\omega}$ model turned out to be suitable as turbulence model. About 150 thousand of the grids were selected after grid sensitivity tests. Based on the results determined in this study, we plan to investigate performance gain of the KSLV-II by adopting a proposed dual bell nozzle.

Intelligent Digital Redesign for Dynamical Systems with Uncertainties (불확실성을 갖는 동적 시스템에 대한 지능형 디지털 재설계)

  • Cho, Kwang-Lae;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.667-672
    • /
    • 2003
  • In this paper, we propose a systematic method for intelligent digital redesign of a fuzzy-model-based controller for continuous-time nonlinear dynamical systems which may also contain uncertainties. The continuous-time uncertain TS fuzzy model is first constructed to represent the uncertain nonlinear systems. An extended parallel distributed compensation(EPDC) technique is then used to design a fuzzy-model-based controller for both stabilization and tracking. The designed continuous-time controller is then converted to an equivalent discrete-time controller by using an integrated intelligent digital redesign method. This new design technique provides a systematic and effective framework for integration of the fuzzy-model-based control theory and the advanced digital redesign technique for nonlinear dynamical systems with uncertainties. Finally, The single link flexible-joint robot arm is used as an illustrative example to show the effectiveness and the feasibility of the developed design method.

Evaluation of Two Robot Vision Control Algorithms Developed Based on N-R and EKF Methods for Slender Bar Placement (얇은막대 배치작업에 대한 N-R 과 EKF 방법을 이용하여 개발한 로봇 비젼 제어알고리즘의 평가)

  • Son, Jae Kyung;Jang, Wan Shik;Hong, Sung Mun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.447-459
    • /
    • 2013
  • Many problems need to be solved before vision systems can actually be applied in industry, such as the precision of the kinematics model of the robot control algorithm based on visual information, active compensation of the camera's focal length and orientation during the movement of the robot, and understanding the mapping of the physical 3-D space into 2-D camera coordinates. An algorithm is proposed to enable robot to move actively even if the relative positions between the camera and the robot is unknown. To solve the correction problem, this study proposes vision system model with six camera parameters. To develop the robot vision control algorithm, the N-R and EKF methods are applied to the vision system model. Finally, the position accuracy and processing time of the two algorithms developed based based on the EKF and the N-R methods are compared experimentally by making the robot perform slender bar placement task.

Damage Monitoring of PSC Girder Bridges based on Acceleration -Impedance Signals under Uncertain Temperature Conditions (불확실한 온도 조건하의 PSC 거더 교량의 가속도-임피던스기반 손상 모니터링)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.107-117
    • /
    • 2011
  • In this study, the effect of temperature-induced uncertainty to damage monitoring using acceleration-impedance response features is analyzed for presterssed concrete(PSC) girder bridges. Firstly, a damage monitoring algorithm using global and local vibration features is designed. As global and local features, acceleration and electro-mechanical impedance features are selected respectively. Secondly, the temperature effect on the acceleration and impedance features for a lab-scaled PSC girder is experimentally analyzed. From the experimental results, compensation models for temperature-acceleration features and temperature-impedance features are estimated. Finally, the feasibility of the acceleration-impedance-based damage monitoring technique using the compensation model is evaluated in the PSC girder for which a set of prestress-loss and flexural stiffness loss cases were dynamically tested.

Close Relations between Arbitration and State Court in each Procedural Stage -With an Emphasis on International Arbitration Agreement- (중재와 법원 사이의 역할분담과 절차협력 관계 -국제적 중재합의 효력에 관한 다툼과 중재합의관철 방안을 중심으로-)

  • Kim, Yong-Jin
    • Journal of Arbitration Studies
    • /
    • v.27 no.1
    • /
    • pp.85-106
    • /
    • 2017
  • This article deals with the relationship between arbitration and state court in each procedural stage. As most legal systems over the world respect arbitration agreement, the relationship between arbitration and state courts puts emphasis on party autonomy and provides the independent power of arbitration agreement tribunal (Kompetenz-Kompetenz). Most institutional arbitration rules the arbitral tribunal to rule on its own jurisdiction. Modern national laws have similar provisions based on Art. 16 UNCITRAL Model Law. In this regards the author throws a question in Chapter II, whether the doctrine of Kompetenz-Kompetenz, namely the ability of the tribunal to decide upon its own jurisdiction is worth while persisting, and whether the Kompetenz-Kompetenz-agreement should be regarded as valid, with the conclusion, that this doctrine should concede to the power of state court and that Kompetenz-Kompetenz-Klausel is invalid. In Chapter III the author discusses the issue of whether the breach of an arbitration agreement could lead to the compensation of damage. Although the author stands for the procedural character of arbitration agreement, he offers a proposal that the breach of an arbitration agreement bring about the compensation of damage. The issue of anti-suit injunction is discussed also in this Chapter. He is against the approval of anti-suit injunction based on an arbitration agreement resisting the other party from pursuing a lawsuit in a foreign country.

Compensation of Aethalometer Black Carbon Data Observed at a Gwangju Site (광주 도심지역에서 측정한 Aethalometer 검댕입자 자료의 보정)

  • Park, Seung-Shik;Jung, Jung-H.;Cho, Sung-Y.;Kim, Seung-Jai
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.6
    • /
    • pp.571-578
    • /
    • 2009
  • $PM_{2.5}$ black carbon (BC) concentrations were measured to investigate the filter spot loading effect in raw BC data at 5-minute time-based resolution using a single-wavelength aethalometer at a Gwangju site. Also the elemental carbon (EC) concentrations from 24-hr integrated filter-based measurements of $PM_{2.5}$ particles were determined to compare with the loading compensated BC values. Close examination of the time-series BC data showed clearly the "gaps" when the filter tape advances, suggesting the correction of raw BC data. Therefore, we calculated the average BC concentration in each range of attenuation (ATN) to decide if there was (or was not) an effect on the aethalometer data according to the loading of the filter spot. A consistent decrease of average BC concentration was found with increasing ATN values for every month, suggesting there was a consistent "spot loading effect" in the raw BC data. The loading compensated BC concentration according to a simple compensation model with loading effect was 1.01~1.15 times greater than the raw BC data. The 24-hr average concentration of EC observed during summer sampling period was about 3% higher than the original 24-hr average BC value and 2% lower than the loading compensated BC concentration.

A Study On Three-dimensional Optimized Face Recognition Model : Comparative Studies and Analysis of Model Architectures (3차원 얼굴인식 모델에 관한 연구: 모델 구조 비교연구 및 해석)

  • Park, Chan-Jun;Oh, Sung-Kwun;Kim, Jin-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.900-911
    • /
    • 2015
  • In this paper, 3D face recognition model is designed by using Polynomial based RBFNN(Radial Basis Function Neural Network) and PNN(Polynomial Neural Network). Also recognition rate is performed by this model. In existing 2D face recognition model, the degradation of recognition rate may occur in external environments such as face features using a brightness of the video. So 3D face recognition is performed by using 3D scanner for improving disadvantage of 2D face recognition. In the preprocessing part, obtained 3D face images for the variation of each pose are changed as front image by using pose compensation. The depth data of face image shape is extracted by using Multiple point signature. And whole area of face depth information is obtained by using the tip of a nose as a reference point. Parameter optimization is carried out with the aid of both ABC(Artificial Bee Colony) and PSO(Particle Swarm Optimization) for effective training and recognition. Experimental data for face recognition is built up by the face images of students and researchers in IC&CI Lab of Suwon University. By using the images of 3D face extracted in IC&CI Lab. the performance of 3D face recognition is evaluated and compared according to two types of models as well as point signature method based on two kinds of depth data information.

Teleoperatoin System Control using a Robust State Estimation in Networked Environment (네트웍 환경에서의 강건상태추정을 이용한 원격조작시스템 제어)

  • Jin, Tae-Seok;Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.746-753
    • /
    • 2008
  • In this paper, we introduce the improved control method are communicated between a master and a slave robot in the teleoperation systems. When the master and slave robots are located in different places, time delay is unavoidable under the network environment and it is well known that the system can become unstable when even a small time delay exists in the communication channel. The time delay may cause instability in teleoperation systems especially if those systems include haptic feedback. This paper presents a control scheme based on the estimator with virtual master model in teleoperation systems over the network. As the behavior of virtual model is tracking the one of master model, the operator can control real master robot by manipulating the virtual robot. And LQG/LTR scheme was adopted for the compensation of un-modeled dynamics. The approach is based on virtual master model, which has been implemented on a robot over the network. Its performance is verified by the computer simulation and the experiment.

Improving the Accuracy of a Heliocentric Potential (HCP) Prediction Model for the Aviation Radiation Dose

  • Hwang, Junga;Yoon, Kyoung-Won;Jo, Gyeongbok;Noh, Sung-Jun
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.279-285
    • /
    • 2016
  • The space radiation dose over air routes including polar routes should be carefully considered, especially when space weather shows sudden disturbances such as coronal mass ejections (CMEs), flares, and accompanying solar energetic particle events. We recently established a heliocentric potential (HCP) prediction model for real-time operation of the CARI-6 and CARI-6M programs. Specifically, the HCP value is used as a critical input value in the CARI-6/6M programs, which estimate the aviation route dose based on the effective dose rate. The CARI-6/6M approach is the most widely used technique, and the programs can be obtained from the U.S. Federal Aviation Administration (FAA). However, HCP values are given at a one month delay on the FAA official webpage, which makes it difficult to obtain real-time information on the aviation route dose. In order to overcome this critical limitation regarding the time delay for space weather customers, we developed a HCP prediction model based on sunspot number variations (Hwang et al. 2015). In this paper, we focus on improvements to our HCP prediction model and update it with neutron monitoring data. We found that the most accurate method to derive the HCP value involves (1) real-time daily sunspot assessments, (2) predictions of the daily HCP by our prediction algorithm, and (3) calculations of the resultant daily effective dose rate. Additionally, we also derived the HCP prediction algorithm in this paper by using ground neutron counts. With the compensation stemming from the use of ground neutron count data, the newly developed HCP prediction model was improved.