• Title/Summary/Keyword: model reaction

Search Result 2,852, Processing Time 0.039 seconds

The Effect of External Noise on Dynamic Behaviors of the $Schl\ddot{o}gl$ Model with the First Order Transition fora Photochemical Reaction

  • 김경란;Lee, Dong J.;신국조
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.11
    • /
    • pp.1113-1118
    • /
    • 1995
  • The Schlo'gl model with the first order transition for a photochemical reaction is considered to study the dynamic behaviors in the neighborhood of the Gaussian white noise by obtaining the explicit results of the time-dependent variance and time correlation function with the aid of approximate methods based on the stationary properties of the system. Then, we discuss the effect of external noise strength on the stability of the model at steady states in detail.

Kinetics Study for Wet Air Oxidation of Sewage Sludge (하수슬러지의 습식산화반응에 대한 동력학적 연구)

  • Ahn, Jae-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.746-752
    • /
    • 2005
  • In this study, the effect of reaction parameters including reaction temperature, time, and pressure on sludge degradation and conversion to intermediates such as organic acids were investigated at low critical wet air oxidation(LC-WAO) conditions. Degradation pathways and a modified kinetic model in LC-WAO were proposed and the kinetics model predictions were compared with experimental data under various conditions. Results in the batch experiments showed that reaction temperature directly affected the thermal hydrolysis reaction rather than oxidation reaction. The efficiencies of sludge degradation and organic acid formation increased with the increase of the reaction temperature and time. The removal of SS at $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$ and $240^{\circ}C$ of reaction temperatures and 10 min of reaction time were 52.6%, 68.3%, 72.6%, and 74.4%, respectively, indicating that most organic suspended solids were liquified at early stage of reaction. At $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$ and $240^{\circ}C$ of reaction temperatures and 40 min of reaction time, the amounts of organic acids formed from 1 g of sludge were 93.5 mg/g SS, 116.4 mg/g SS, 113.6 mg/g SS, and 123.8 mg/g SS, respectively, and the amounts of acetic acid from 1 g of sludge were 24.5 mg/g SS, 65.5 mg/g SS, 88.1 mg/g SS, and 121.5 mg/g SS, respectively. This suggested that the formation of sludge to organic acids as well as the conversion of organic acids to acetic acid increased with reaction temperature. Based on the experimental results, a modified kinetic model was suggested for the liquefaction reaction of sludge and the formation of organic acids. The kinetic model predicted an increase in kinetic parameters $k_1$ (liquefaction of organic compounds), $k_2$ (formation of organic acids to intermediate), $k_3$ (final degradation of intermediate), and $k_4$ (final degradation of organic acids) with reaction temperature. This indicated that the liquefaction of organic solid materials and the formation of organic acids increase according to reaction temperature. The calculated activation energy for reaction kinetic constants were 20.7 kJ/mol, 12.3 kJ/mol, 28.4 kJ/mol, and 54.4 kJ/mol, respectively, leading to a conclusion that not thermal hydrolysis but oxidation reaction is the rate-limiting step.

Effects of coal devolatilization model and turbulent reaction rate in numerical simulations of a large-scale pulverized-coal-fired boiler (상용 미분탄 보일러 연소해석에서 석탄 탈휘발 모델 및 난류반응속도의 영향 평가)

  • Yang, JooHyang;Kim, Jung-en A.;Ryu, Changkook
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.59-62
    • /
    • 2014
  • Predicting coal combustion by computational fluid dynamics (CFD) requires a combination of complicated flow and reaction models for turbulence, radiation, particle flows, heterogeneous combustion, and gaseous reactions. There are various levels of models available for each of the phenomena, but the use of advanced models are significantly restricted in a large-scale boiler due to the computational costs and the balance of accuracy between adopted models. In this study, the influence of coal devolatilization model and turbulent mixing rate was assessed in CFD for a commercial boiler at 500 MWe capacity. For coal devolatilization, two models were compared: i) a simple model assuming single volatile compound based on proximate analysis and ii) advanced model of FLASHCHAIN with multiple volatile species. It was found out that the influence of the model was observed near the flames but the overall gas temperature and heat transfer rate to the boiler were very similar. The devolatilization rate was found not significant since the difference in near-flame temperature became noticeable when it was multiplied by 10 or 0.1. In contrast, the influence of turbulent mixing rate (constant A in the Magnussen model) was found very large. Considering the heat transfer rate and flame temperature, a value of 1.0 was recommended for the rate constant.

  • PDF

Basic Study for Development of Denitrogenation Process by Ion Exchange(III) - A kinetic study in the batch reactor - (이온교환법에 의한 탈질소 공정개발의 기초연구(III) - 회분식 반응기에서의 반응속도론-)

  • 채용곤;이동환;김승일;윤태경;홍성수;이민규
    • Journal of Environmental Science International
    • /
    • v.9 no.2
    • /
    • pp.165-171
    • /
    • 2000
  • A kinetic study for anion exchange was performed for commercially available Cl- type anion exchange resin in use to remove nitrate in water. The obtained results from the batch reactor were applied to the Langmuir and Freundlich models. The constants for Lagmuir model were qmax =29.82 and b=0.202, and for Freundlich model were K=5.509 and n=1.772. Langmuir model showed betterfit than Frendlich model for the experimental results. Ion exchange reaction rate was also calculated and the the approximate first-order reaction, rate constant k1 was 0.16 L/mg.hr. Effective diffusion coefficient was obtained in the range from $9.67$\times$10^{-8} cm^2/sec$ for initial concentration change, and from $6.09$\times$10^{-7} to 3.98$\times$10^{-6} cm^2/sec$ for reaction temperature change. Activation energy during the diffusion was calculated as 26 kcal/mol.

  • PDF

Development of Analyzing Model of Groundwater Table Fluctuation(I): Theory of Model (지하수위 변동 해석모델 개발(I): 모델의 이론)

  • Kim, Nam Won;Kim, Youn Jung;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2277-2284
    • /
    • 2013
  • In this study, a groundwater table fluctuation method is suggested to predict groundwater level by means of groundwater table fluctuation due to recharge and discharge under unsteady condition. This model analyzes groundwater variation characteristics by using reaction factor related with groundwater flow and specific yield related with recharge. For the test of this model, measured groundwater level at JD Yongdam 1 and JW Konghang for 5 years (2006-2010) were used. At JD Yongdam 1, the estimated specific yield was 0.023, and the estimated reaction factor was 0.039. At JW Konghang, the estimated specific yield was 0.009 and the estimated reaction factor was 0.028, respectively. This model can estimate recharge and saturated parameters, thus it is expected that this model would be the proper tool for checking the parameter of hydrologic model and percolation features.

A Study for the Advanced Design of Rotary Kiln Incinerator III : 3-Dimensional CC1$_4$/CH$_4$Gas-phase Turbulent Reaction Model (로타리 킬른 소각로 고도 설계를 위한 연구 III : 3차원 CC1$_4$/CH$_4$기상난류 반응 모델)

  • 엄태인;장동순;채재우
    • Journal of Energy Engineering
    • /
    • v.2 no.1
    • /
    • pp.54-67
    • /
    • 1993
  • Two turbulent reaction models of the premixed CC1$_4$/CH$_4$/air mixture are successfully incorporated in a 3-dimensional computer program and is applied for Dow Chemical incinerator equipped with two main off-center burners. The first reaction model is fast chemistry model(model 1), in which chemical reaction is governed by the turbulent mixing itself. And the second one is nonequilibrium model(model 2), where the effect of the chemical kinetics due to the presence of CC1$_4$is considered by the incorporation of the burning velocity data of CC1$_4$. The second model not only shows the flame inhibition trend due to the presence CC1$_4$compound, but also predicts qualitatively the vortical stratification of the CC1$_4$concentration appeared experimentally at the kiln exit. Other comparisions of two models are made in detail.

  • PDF

Analysis of Cognition Levels related to Acid-Base Models in High School Science-Gifted Students (고등학교 과학영재 학생들의 산-염기 모델의 인지 수준 분석)

  • Ryu, Eun-Ju;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.1
    • /
    • pp.37-47
    • /
    • 2021
  • In this study, the model cognition level of high school science-gifted students about the two types of acid-base models taught in secondary schools was analyzed. In order to find out the model cognition level of students, 12 items were developed based on the acid-base reaction and the dissociation reaction of acids and bases. The subjects of the study were 95 students of two science-gifted schools. As a result of the questionnaire analysis, model cognition levels were analyzed 6 levels in the context of consistency, inconsistency, and unexplainable scope of the two models. In the acid-base reaction item, the largest percentage of students cognized only understanding of the two models. In the acid-base dissociation reaction item, they understood the two models and perceived the 'Known Ignorance' that cognizes the limitations of one model. However, there was only one student who perceived the limitations of both models and all of the 'Unknown Ignorance' that the model could not explain. Through this, we argued that there is a need for educational efforts to raise the model cognition level of science-gifted students.

Pyrolysis Characteristics of Sawdust and Rice Husk (톱밥과 왕겨의 열분해 특성 연구)

  • Park, Dong Kyoo;Seo, Myung Won;Goo, Jeong Hoi;Kim, Sang Done;Lee, See Hoon;Lee, Jae Goo;Song, Byung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.415-423
    • /
    • 2007
  • Pyrolysis characteristics of sawdust and rice husk as biomass resources in a thermogravimetric analysis were determined. Experiments were carried out with a linear heating rate under inert atmosphere of $N_2$ gas. Pyrolysis of the biomass can be classified as a lower temperature reaction zone where the major component of holocellulose is thermally decomposed and a high temperature reaction zone where lignin is thermally decomposed. The obtained data was analyzed by the two-step consecutive reaction model. Activation energies of sawdust and rice husk are found to be respectively 82.5 kJ/mol and 85.1kJ/mol in the low temperature zone according to the first order reaction model and 19.7 kJ/mol, 22.0 kJ/mol in the high temperature zone according to the three-way transport model. The reaction rate constant with variation of heating rate can be well predicted by the kinetic compensation relation of Gaur-Reed.

Dependence of an Interfacial Diels-Alder Reaction Kinetics on the Density of the Immobilized Dienophile: An Example of Phase-Separation

  • Min, Kyoung-Mi;Jung, Deok-Ho;Chae, Su-In;Kwon, Young-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1679-1684
    • /
    • 2011
  • Interfacial reactions kinetics often differ from kinetics of bulk reactions. Here, we describe how the density change of an immobilized reactant influences the kinetics of interfacial reactions. Self-assembled monolayers (SAMs) of alkanethiolates on gold were used as a model interface and the Diels-Alder reaction between immobilized quinones and soluble cyclopentadiene was used as a model reaction. The kinetic behavior was studied using varying concentrations of quinones. An unusual threshold density of quinones (${\Gamma}_c$ = 5.2-7.2%), at which the pseudo-first order rate constant started to vary as the reaction progressed, was observed. This unexpected kinetic behavior was attributed to the phase-separation phenomena of multi-component SAMs. Additional experiments using more phase-separated two-component SAMs supported this explanation by revealing a significant decrease in ${\Gamma}_c$ values. When the background hydroxyl group was replaced with carboxylic or phosphoric acid groups, ${\Gamma}_c$ was observed at below 1%. Also, more phase-separated thermodynamically controlled SAMs produced a lower critical density (3% < ${\Gamma}_c$ < 4.9%) than that of the less phaseseparated kinetically controlled SAMs (6.5% < ${\Gamma}_c$ < 8.9%).

Numerical Study on Operating Parameters and Shapes of a Steam Reformer for Hydrogen Production from Methane (천연가스로부터 수소를 생산하기 위한 수증기 개질기의 작동조건과 형상에 대한 수치해석 연구)

  • Park, Joong-Uen;Lee, Shin-Ku;Lim, Sung-Kwang;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.60-68
    • /
    • 2009
  • The steam reformer for hydrogen production from methane is studied by a numerical method. Langmuir- Hinshelwood model is incorporated for catalytic surface reactions, and the pseudo-homogeneous model is used to take into account local equilibrium phenomena between a catalyst and bulk gas. Dominant chemical reactions are Steam Reforming (SR) reaction, Water-Gas Shift (WGS) reaction, and Direct Steam Reforming (DSR) reaction. The numerical results are validated with experimental results at the same operating conditions. Using the validated code, parametric study has been numerically performed in view of the steam reformer performance. As increasing a wall temperature, the fuel conversion increases due to the high heat transfer rate. When Steam to Carbon Ratio (SCR) increases, the concentration of carbon monoxide decreases since WGS reaction becomes more active. When increasing Gas Hourly Space Velocity (GHSV), the fuel conversion decreases due to the heat transfer limitation and the low residence time. The reactor shape effects are also investigated. The length and radius of cylindrical reactors are changed at the same catalyst volume. The longer steam reformer is, the better steam reformer performs. However, system energy efficiency decreases due to the large pressure drop.