Kinetics Study for Wet Air Oxidation of Sewage Sludge

하수슬러지의 습식산화반응에 대한 동력학적 연구

  • Ahn, Jae-Hwan (Construction Environment Research Department, Korea Institute of Construction Technology)
  • 안재환 (한국건설기술연구원 건설환경연구부)
  • Published : 2005.07.31

Abstract

In this study, the effect of reaction parameters including reaction temperature, time, and pressure on sludge degradation and conversion to intermediates such as organic acids were investigated at low critical wet air oxidation(LC-WAO) conditions. Degradation pathways and a modified kinetic model in LC-WAO were proposed and the kinetics model predictions were compared with experimental data under various conditions. Results in the batch experiments showed that reaction temperature directly affected the thermal hydrolysis reaction rather than oxidation reaction. The efficiencies of sludge degradation and organic acid formation increased with the increase of the reaction temperature and time. The removal of SS at $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$ and $240^{\circ}C$ of reaction temperatures and 10 min of reaction time were 52.6%, 68.3%, 72.6%, and 74.4%, respectively, indicating that most organic suspended solids were liquified at early stage of reaction. At $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$ and $240^{\circ}C$ of reaction temperatures and 40 min of reaction time, the amounts of organic acids formed from 1 g of sludge were 93.5 mg/g SS, 116.4 mg/g SS, 113.6 mg/g SS, and 123.8 mg/g SS, respectively, and the amounts of acetic acid from 1 g of sludge were 24.5 mg/g SS, 65.5 mg/g SS, 88.1 mg/g SS, and 121.5 mg/g SS, respectively. This suggested that the formation of sludge to organic acids as well as the conversion of organic acids to acetic acid increased with reaction temperature. Based on the experimental results, a modified kinetic model was suggested for the liquefaction reaction of sludge and the formation of organic acids. The kinetic model predicted an increase in kinetic parameters $k_1$ (liquefaction of organic compounds), $k_2$ (formation of organic acids to intermediate), $k_3$ (final degradation of intermediate), and $k_4$ (final degradation of organic acids) with reaction temperature. This indicated that the liquefaction of organic solid materials and the formation of organic acids increase according to reaction temperature. The calculated activation energy for reaction kinetic constants were 20.7 kJ/mol, 12.3 kJ/mol, 28.4 kJ/mol, and 54.4 kJ/mol, respectively, leading to a conclusion that not thermal hydrolysis but oxidation reaction is the rate-limiting step.

본 연구에서는 저임계 습식산화 조건에서 반응온도, 시간 및 압력 등 반응조건이 슬러지의 분해 및 유기산의 생성에 미치는 영향을 조사하였다. 또한, 저임계 습식산화의 분해경로 및 수정된 동력학적 모델을 제안하였으며, 다양한 조건에서 수행된 실험결과와 예측치를 비교, 검토하였다. 회분식 실험결과 반응온도는 산화반응보다는 열적가수분해 반응에 직접적으로 영향을 미치며, 반응온도와 시간이 증가할수록 슬러지의 분해효율과 유기산의 생성효율이 증가하는 것으로 나타났다. 반응온도 $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$$240^{\circ}C$, 반응시간 10 min에서 SS 농도의 제거율이 52.6%, 68.3%, 72.6% 및 74.4%로 나타나 반응 초기에 유기성 고형물(총 고형물의 약 75%)의 대부분이 액상화가 진행된 것으로 판단된다. 반응온도 $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$$240^{\circ}C$, 반응시간 40 min에서 제거 슬러지당 생성된 유기산은 각각 93.5 mg/g SS, 116.4 mg/g SS, 113.6 mg/g SS 및 123.8 mg/g SS이며, 아세트산 생성은 24.5 mg/g SS, 65.5 mg/g SS, 88.1 mg/g SS 및 121.5 mg/g SS로 나타나 반응온도가 증가할수록 유기산의 생성율도 증가하였으며, 분해되기 쉬운 유기산이 아세트산으로 전환되는 것으로 나타났다. 제안한 수정 동력학적 모델에서 반응온도가 증가함에 따라 반응속도상수 $k_1$(고형물의 액상화), $k_2$(중간산물의 유기산 생성), $k_3$(중간산물의 최종분해) 및 $k_4$(유기산의 최종 분해) 모두 증가하였다. 이는 반응온도의 증가에 따른 유기성 고형물질의 액상화와 유기산 생성율의 증가를 의미한다. 반응속도상수($k_1{\sim}k_4$)에 대한 활성화에너지를 산정한 결과, 각각 20.7 kJ/mol, 12.3 kJ/mol, 28.4 kJ/mol 및 54.4 kJ/mol로 나타나 열적가수분해 반응 보다는 산화반응이 율속단계인 것으로 판단된다.

Keywords

References

  1. Waste Manage. v.20 Wet air oxidation for the treatment of industrial wastes. Chemical aspects, reactor design and industrial applications in Europe Foussard, J.N.;Debellefontaine, H.
  2. Solid Waste Manage. v.25 Supercritical water testing reveals new process holds promise Modell, M.;Gaudel, G.G.;Simson, M.;Hong. G.T.;Biemann, K.
  3. AIChE Meeting Efficiency of hydrogen peroxide and oxygen in supercritical water oxidation of acetic acid and 2, 4-Dichlorophenol Lee, D.S.;Li, L.;Gloyna, E.F.
  4. J. Energy & Fuel v.1 Oxidation kinetics of carbon monoxide in supercritical water Helling, R.K.;Tester, J.W.
  5. Environ. Sci. Technol. v.22 no.11 Oxidation of simple compounds and mixtures in supercritical water: Carbon monoxide, ammonia, and ethanol Helling, R.K.;Tester, J.W.
  6. Energy and Fuels Fundamental kinetics of methanol oxidation in supercritical water Webley, P.A.;Tester, J.W.
  7. Can. J. Chem. Eng. v.51 Oxidation of propionic acid solutions Day, D.C.;Hudgins, R.R.;Silveston, P.L.
  8. Water Pollut. Res. v.8 Wet air oxidation low molecular weight organic acids Williams, P.E.L.;Day, D.C.;Hudgins, R.R.;Silveston, P.L.
  9. Sep. Purif. Tech. v.31 no.1 Kinetic study into the wet air oxidation of printing and dyeing wastewater Chen, G.;Lei, L.;Hu, X.;Yue, P.L.
  10. J. Hazard. Mater. v.B93 Low-molecular-weight carboxlic acids produced from hydrothermal treatment of organic wastes Armando, T.Q.;Muhammad, F.;Kang, K.Y.;Hiroyuki, D.;Koichi, F.
  11. AIChE v.37 Generalized kinetic model for wet oxidation organic compounds Lixiong, L.;Peishi, C.;Earnest, F.G.
  12. Sep. Purif. Tech. v.31 The study on the wet air oxidation of highly concentrated emulsified wastewater and its kinetics WenWei Tang;Xinping Zeng;Jianfu Zhao;Guowei Gu;Yiju Li;Yaming Ni
  13. 대한환경공학회지 v.25 no.10 습식산화 반응에서 촉매 및 pH가 하수슬러지의 분해에 미치는 영향 안재환;조완선;지재성;배우근;이미경
  14. J. Water Pollut. Cont. Fed. v.55 Thermal pre-treatment of sludge, a field demonstration Haug, R.T.;LeBrun, T.J.;Tortorici, L.D.
  15. AIChE v.67 no.11 Kinetic of wet air oxidation of phenol Miguelez, Portela;Lopex Bernal, J.;Nebot Sanz, E.;Martinez de la Ossa, E.
  16. The Levenberg-Marquartd algorithm; Implementation and theory;Numerical analysis, Vol 630 More, J.J.;Watson, G.A.(ed.)
  17. J. Environ. Eng. no.Sep. Kinetics of wet air oxidation of high-strength industrial wastewater Sheng, H.L.;Shin, J.H.