• 제목/요약/키워드: model organism

검색결과 243건 처리시간 0.022초

Social Media Advertising Effectiveness: A Conceptual Framework and Empirical Validation

  • Liguo Lou;Joon Koh
    • Asia pacific journal of information systems
    • /
    • 제28권3호
    • /
    • pp.183-203
    • /
    • 2018
  • In the era of Web 2.0, social media advertising can simultaneously stimulate consumers' brand purchase intention and brand information sharing intention. Product sales and brand information diffusion are equally important for a company that conducts advertising. This study investigates how features of brand content influence social media advertising effectiveness by integrating the stimulus-organism-response model and classic advertising effectiveness models. An analysis of 267 survey questionnaires shows that brand content-related cues, including perceived uniqueness, perceived vividness, and perceived interactivity have significant effects on consumers' affective and cognitive involvement, which then affect their attitude toward brand content. As a result, the consumers' attitude toward the brand and their brand purchase intention, as well as their brand content sharing intention, are positively affected by attitude toward brand content. This study contributes to a better understanding of how social advertising works, which suggests that managers should effectively use social media to conduct advertising.

제품편익과 제품동일시가 구매의도에 미치는 영향 - 미추구성향의 조절효과를 중심으로 - (The effect of product benefits and product identification on purchase intention - Focused on the moderating effect of aesthetic seeking tendency -)

  • 최선형;홍지현
    • 복식문화연구
    • /
    • 제24권4호
    • /
    • pp.417-430
    • /
    • 2016
  • This study had two aims. First, the study intended to identify the influences of product benefits and product identification on consumers' purchase intention, Second, it wanted to assess the moderating effects of consumers' aesthetic seeking tendency on their decision-making process. Based on the stimulus-organism-response (S-O-R) paradigm and the product personality-brand identification-purchase intention model, this study proposed a research model, the benefits-product identification-purchase intention model. To test the model, a survey was conducted of female college students; a total of 298 questionnaires were analyzed. The stimulus used was a popular model of Nike running footwear: the Luna Eclipse+2. Factor analysis and structural equation analysis were conducted to analyze the research model. The results indicate : (1) The aesthetic benefit influenced product identification positively. The aesthetic benefit, functional benefit and product identification were all positively related to purchase intention. (2) The aesthetic seeking tendency mediated the influences of product benefits on consumers' purchase intention in the decision-making process. For consumers in the 'high' level group of aesthetic seeking tendency, aesthetic benefit and social benefit affected purchase intention and for consumers in the 'low' level group of aesthetic seeking tendency, the functional benefit only affected purchase intention. Based on this study, we find evidence that product benefits and aesthetic seeking tendency play important roles in consumers' decision-making process in product purchase.

가상경계법을 적용한 2차원 미생물 이동에 관한 수치연구 (NUMERICAL SIMULATION OF TWO-DIMENSIONAL MICROORGANISM LOCOMOTION USING THE IMMERSED BOUNDARY METHOD)

  • 란지트;서용권;강상모
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.164-169
    • /
    • 2009
  • Study on swimming of microorganisms like, sperm motility, cilia beating, bacterial flagellar propulsion has found immense significance in the field of biological fluiddynamics. Because of the complexity involved, it is challenging for the researchers to model such problems. Immersed boundary method has proved its efficacy in the field of biological fluiddynamics, The present work aims at performing a numerical study on the microorganism locomotion using the immersed boundary method proposed by Peskin[1]. A two-dimensional model of the microorganism is modeled as thin elastic filament described as a sine wave. The neutrally buoyant organism undergoing deformations is immersed in a viscous and incompressible fluid. The fluid quantities are described using Eulerian coordinates and the immersed body is represented by Lagrangian coordinates. The Eulerian and Lagrangian variables are connected by the Dirac delta function. The Navier-Stokes equations governing the fluid flow are solved using the fractional step method on a staggered Cartesian grid system. The developed numerical code in FORTRAN will be validated by comparing the numerical results with the available results.

  • PDF

도메인 조합 기반 단백질-단백질 상호작용 확률 예측기법 (A Domain Combination Based Probabilistic Framework for Protein-Protein Interaction Prediction)

  • Han, Dong-Soo;Seo, Jung-Min;Kim, Hong-Soog;Jang, Woo-Hyuk
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2003년도 제2차 연례학술대회 발표논문집
    • /
    • pp.7-16
    • /
    • 2003
  • In this paper, we propose a probabilistic framework to predict the interaction probability of proteins. The notion of domain combination and domain combination pair is newly introduced and the prediction model in the framework takes domain combination pair as a basic unit of protein interactions to overcome the limitations of the conventional domain pair based prediction systems. The framework largely consists of prediction preparation and service stages. In the prediction preparation stage, two appearance pro-bability matrices, which hold information on appearance frequencies of domain combination pairs in the interacting and non-interacting sets of protein pairs, are constructed. Based on the appearance probability matrix, a probability equation is devised. The equation maps a protein pair to a real number in the range of 0 to 1. Two distributions of interacting and non-interacting set of protein pairs are obtained using the equation. In the prediction service stage, the interaction probability of a protein pair is predicted using the distributions and the equation. The validity of the prediction model is evaluated fur the interacting set of protein pairs in Yeast organism and artificially generated non-interacting set of protein pairs. When 80% of the set of interacting protein pairs in DIP database are used as foaming set of interacting protein pairs, very high sensitivity(86%) and specificity(56%) are achieved within our framework.

  • PDF

일주기 리듬 편승과 관련된 한계주기궤도 (A Limit Cycle Model about the Entrainment of Circadian Rhythm)

  • 최돈찬
    • 한국발생생물학회지:발생과생식
    • /
    • 제12권1호
    • /
    • pp.9-18
    • /
    • 2008
  • 현존하는 생물들은 주변 환경에서 오는 반복되는 신호의 영향을 받고 있다. 그 신호는 태양 및 지구의 운동 관계에서 되풀이되어 일어나는 주기적인 변화이다. 생식 및 번식, 세포 내 각종 분자들의 작용, 발생 단계에 일어나는 다양한 변화 등등의 생리학적/행동학적 활동들은 모두 일주기든 연주기든 주기성을 띠고 있다. 일주기 리듬을 통하여 생물들은 근본적으로 주변의 외부 시간에 그 생물 자체가 적응하게 하여, 일상적으로 반복되는 환경에서 적절한 시기에 활동하도록 하는 것이다. 각종 리드미컬한 패턴 중에 편승 변환을 고찰하기 위해 제시된 한계주기궤도에 초점을 맞추어 고찰하고자 한다.

  • PDF

Textile dye wastewater treatment using coriolus versicolor

  • Sathian, S.;Radha, G.;Priya, V. Shanmuga;Rajasimman, M.;Karthikeyan, C.
    • Advances in environmental research
    • /
    • 제1권2호
    • /
    • pp.153-166
    • /
    • 2012
  • Decolourization potential of white rot fungal organism, coriolus versicolor, was investigated in a batch reactor, for textile dye industry wastewater. The influence of process parameters like pH, temperature, agitation speed and dye wastewater concentration on the decolourization of textile dye wastewater was examined by using Response surface methodology (RSM). The maximum decolourization was attained at: pH- 6.8, temperature - $27.9^{\circ}C$, agitation speed - 160 rpm and dye wastewater concentration - 1:2. From the analysis of variance (ANOVA) results it was found that, the linear effect of agitation speed and dye wastewater concentration were significant for the decolourization of textile dye wastewater. At these optimized condition, the maximum decolourization and chemical oxygen demand (COD) reduction was found to be 64.4% and 79.8% respectively. Various external carbon sources were tried to enhance the decolourization of textile dye wastewater. It was observed that the addition of carbon source enhances the decolourization of textile dye wastewater. Kinetics of textile dye degradation process was studied by first order and diffusional model. From the results it was found that the degradation follows first order model with $R^2$ value of 0.9430.

Model development in freshwater ecology with a case study using evolutionary computation

  • Kim, Dong-Kyun;Jeong, Kwang-Seuk;McKay, Robert Ian (Bob);Chon, Tae-Soo;Kim, Hyun-Woo;Joo, Gea-Jae
    • Journal of Ecology and Environment
    • /
    • 제33권4호
    • /
    • pp.275-288
    • /
    • 2010
  • Ecological modeling faces some unique problems in dealing with complex environment-organism relationships, making it one of the toughest domains that might be encountered by a modeler. Newer technologies and ecosystem modeling paradigms have recently been proposed, all as part of a broader effort to reduce the uncertainty in models arising from qualitative and quantitative imperfections in the ecological data. In this paper, evolutionary computation modeling approaches are introduced and proposed as useful modeling tools for ecosystems. The results of our case study support the applicability of an algal predictive model constructed via genetic programming. In conclusion, we propose that evolutionary computation may constitute a powerful tool for the modeling of highly complex objects, such as river ecosystems.

Quantitative Analysis of Leuconostoc mesenteroides and Lactobacillus plantarum Populations by a Competitive Polymerase Chain Reaction

  • Koh, Young-Ho;Kim, Myoung-Dong;Han, Nam-Soo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권5호
    • /
    • pp.801-806
    • /
    • 2002
  • A multiplex competitive polymerase chain reaction (PCR) method was developed for the rapid identification and quantification of Leuconostoc mesnteroides and Lactobacillus plantarum populations which are the key microorganisms in kimchi fermentation. The strain-specific primers were designed to selectively amplify the target genes encoding 165 rRNA of L. plantarum and dextransucrase of L. mesenteroides. There was a linear relationship between the band intensity of PCR products and the number of colony forming units of each model organism. The PCR quantification method was compared with a traditional plate-counting method f3r the enumeration of the two lactic acid bacteria in a mixed suspension culture and also applied to a real food system, namely, watery kimchi. The population dynamics of the two model organisms in the mixed culture were reliably predictable by the competitive PCR analysis.

암 치료를 위한 면역반응의 체계적인 연구 (A Systems Approach to Immune Response for Cancer Treatment)

  • 이권순
    • 대한의용생체공학회:의공학회지
    • /
    • 제13권3호
    • /
    • pp.181-188
    • /
    • 1992
  • This paper provides an overview of system analysis of immunology. The theoretical research in this area is aimed at an understanding of the precise manner by which the immune system controls Infec pious diseases, cancer, and AIDS. This can provide a systematic plan for immunological experimentation by means of an integrated program of immune system analysis, mathematical modeling and computer simulation. Biochemical reactions and cellular fission are naturally modeled as nonlinear dynamical processes to synthesize the human immune system! as well as the complete organism it is intended to protect. A foundation for the control of tumors is presented, based upon the formulation of a realistic, knowledge based mathematical model of the interaction between tumor cells and the immune system. Ordinary bilinear differential equations which are coupled by such nonlinear term as saturation are derived from the basic physical phenomena of cellular and molecular conservation. The parametric control variables relevant to the latest experimental data are also considered. The model consists of 12 states, each composed of first-order, nonlinear differential equations based on cellular kinetics and each of which can be modeled bilinearly. Finally, tumor control as an application of immunotherapy is analyzed from the basis established.

  • PDF

Genetic Variation of Rice Populations Estimated Using nrDNA ITS Region Sequence

  • Wang, Dong;Hong, Soon-Kwan
    • 한국자원식물학회지
    • /
    • 제27권3호
    • /
    • pp.249-255
    • /
    • 2014
  • The rice belonging to Oryza sativa is not only has significant economic importance, for it is the major source of nutrition for about 3 billion all around the world. But also plays a vital role as a model organism, because it has a number of advantages to be a model plant, such as efficient transformation system and small genome size. Many methods and techniques have been conducted to attempt to distinguish different Oryza sativa species, such as amplified fragment length polymorphism (AFLP), random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR) and so on. However, studies using sequence analysis of internal transcribed spacer (ITS), a region of ribosomal RNA has not been reported until now. This study was undertaken with an aim to understand the phylogenetic relationships among sixteen isolates of Oryza sativa collected from abroad and fifteen isolates collected from Korea, using ribosomal RNA (rRNA) internal transcribed spacer (ITS) sequences to compare the phylogeny relationships among different Oryza sativa species. The size variation obtained among sequenced nuclear ribosomal DNA (nrDNA) ITS region ranged from 515bp to 1000bp. The highest interspecific genetic distance (GD) was found between Sfejare 45 (FR12) and Anapuruna (FR15). Taebong isolate showed the least dissimilarity of the ITS region sequence with other thirty isolates. This consequence will help us further understanding molecular diversification in intra-species population and their phylogenetic analysis.