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Ecological modeling faces some unique problems in dealing with complex environment-organism relationships, 

making it one of the toughest domains that might be encountered by a modeler. Newer technologies and ecosystem 

modeling paradigms have recently been proposed, all as part of a broader effort to reduce the uncertainty in models 

arising from qualitative and quantitative imperfections in the ecological data. In this paper, evolutionary computation 

modeling approaches are introduced and proposed as useful modeling tools for ecosystems. The results of our case 

study support the applicability of an algal predictive model constructed via genetic programming. In conclusion, we 

propose that evolutionary computation may constitute a powerful tool for the modeling of highly complex objects, such 

as river ecosystems.
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INTRODUCTION

Diverse ecosystem phenomena arising from combina-

tions of living organisms and their interactions with the 

physical environment are highly nonlinear, very com-

plex, and frequently chaotic (Fielding 1999). In a Newto-

nian physical simulation of a thrown ball, for example, it 

is necessary to incorporate factors such as the effects of 

gravity, the mass of the ball, etc. In many circumstances, 

we can ignore aspects such as air density, wind, etc. In 

other circumstances (golf, baseball), however, these fac-

tors may prove important. Generally, we know with a 

fair degree of accuracy what must be included and what 

must be omitted to construct a model with the required 

level of accuracy, according to the degree of relevance to 

the issue. By way of contrast, we frequently possess little 

of this type of knowledge in the study of ecology, which is 

not the case in physics or chemistry.

Hence, it can prove quite difficult to forecast and ex-

plain the broad variety of environmental aspects and 

their emergent behaviors in ecosystems, especially as 

compared to other existing scientific systems. Ecological 

modeling faces some unique problems in dealing with 

complex environment-organism relationships, and is 

one of the toughest domains that might be encountered 

by a modeler. The relevant difficulties derive both from 

the complexity of the systems being modeled and the 

quality and quantity of data available for model develop-

ment (Shan et al. 2006). 

However, this is not the only reason that ecological 
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modeling is difficult. The data, too, may introduce some 

difficulty. Ecological data is frequently both rough and 

noisy, particularly when it is sampled from the field. Field 

sampling is generally expensive, since it is often collected 

by hand. The data is frequently sparse (missing) and/or 

collected in an irregular fashion, owing to exceptional 

conditions including illness, equipment failure, or holi-

days. As reported previously by Lek (2007), ecological data 

frequently contains sampling errors and measurement 

and intermittent estimation mistakes, thereby introduc-

ing uncertainty into the resultant models. Moreover, the 

sources of errors themselves may be biased, thus creating 

errors that are correlated with the measurements.

Although the development of sampling and measur-

ing technologies for data collection has ameliorated 

these problems to some degree, many ecological datasets 

have been collected over periods of multiple years, and 

these changes have had limited impact thus far. The is-

sues relevant to coping with imperfect data remain very 

important in the field of ecological modeling. Moreover, 

additional difficulties arise from the large numbers of 

variables relative to the number of instances in ecological 

datasets – because we do not generally know which rela-

tionships are important, we tend to include all available 

measurements, rather than risk omitting an important 

one. Consequently, the redundant variables may create 

additional difficulties in the development of automated 

modeling methods.

A broad variety of methods have been employed in 

the development of such models, ranging from classical 

mathematical modeling (Recknagel and Benndorf 1982, 

Chapra and Reckhow 1983) to evolutionary computation 

(EC) (Kim et al. 2007b, Cao et al. 2008). EC can be used 

to create automatic functions or models, producing di-

verse candidates with a nonlinear computational struc-

ture; EC, as well as artificial neural networks (ANN), has 

yielded promising results in terms of the prediction cer-

tain environmental phenomena in ecological research 

(Recknagel et al. 2002, Cho and Sung 2004, Park et al. 

2006a). In this paper, we discuss the relevance of EC to 

ecological modeling, illustrating it with an application 

to water quality modeling, and specifically to plankton 

population dynamics.

The remainder of this paper is structured as follows. 

First, we detail the relevant background of ecological 

modeling, describing the wide range of techniques that 

have been used thus far. We then attempted to identify 

the appropriate situations for the use of ecological mod-

eling. We described some nature-inspired computational 

methods (of which EC constitutes a sub-class). We then 

investigated the important considerations to be taken 

into consideration in the development of an ecological 

model. We illustrate this via specific applications to water 

quality, and then conclude with a discussion of the ap-

plicability of EC to ecological modeling.

NECESSITY OF ECOLOGICAL MODELING

Why is ecological modeling special?

The model can be broadly defined as a specific repre-

sentation of a system, in which each component involves 

a combination of relationships and interactions. In some 

cases, the models do not reflect the full mechanisms of 

the dynamic and integrated systems – relatively simple 

model approaches such as regression, logistic-type mod-

els and predator-prey models may be employed in order 

to gain insight into general principles and probabilities 

(Lotka 1925, Volterra 1926, Schaefer 1968, Boerema and 

Gulland 1973, Cloern 1996). However, the ultimate ob-

jective of almost all ecological model construction is the 

construction of a system that can reproduce and simu-

late patterns of outcomes. Thus, the constructed models 

must be sufficiently sophisticated to accurately represent 

the target system, with the additional assumption that all 

of the knowledge is suited to the representation. Such 

models can be employed in the interpretation of general 

possibilities or the prediction of outcomes for particular 

populations, communities, or ecosystems.

Initially, ecosystems researchers engaged in great de-

bates as to whether in vitro or in vivo investigations were 

more appropriate for ecosystems research. Although 

both experimental approaches require more time and ef-

fort than mathematical or other theoretical approaches, 

such experiments do not guarantee a high probability 

that the system’s performance will be satisfactory. This 

has compelled researchers to search for methods capable 

of representing the target system in ways suitable to the 

principal objectives of ecological modeling.

Many approaches to ecosystems modeling have been 

developed that reproduce a system and reveal interac-

tions and relationships, particularly when other experi-

mental approaches prove impossible or impractical. Since 

Eugene Odum introduced theoretical modeling meth-

ods for use in systems ecology (Odum 1983), a number 

of models have been constructed in efforts to elucidate 

ecological processes more accurately. Jørgensen (1992) 

previously proposed the concept of exergy, as well as 

methods for computing ecosystem quality, to better un-
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derstand the information level and interactions between 

ecological theory and the models. Deaton and Winebrake 

(2000) previously surveyed a variety of dynamic models 

that could be applied to environmental systems to model 

growth patterns, coupled predator-prey populations, wa-

ter pollution, global warming, and so forth. 

Ecological issues for freshwater systems in South 
Korea

These recent developments in modeling techniques 

have been previously applied to a case study examining 

algal communities in freshwater ecosystems. In Korea, 

modeling has been more frequently applied to the fields 

of hydrology and hydraulics than to limnology and fresh-

water ecology (Park and Lee 2002, Cho and Sung 2004). In 

this paper, we demonstrate the application of EC to eco-

logical analysis and modeling in the context of Korean 

freshwater ecosystems.

The majority of freshwater ecosystems in South Ko-

rea no longer bear any resemblance to natural streams 

or lakes. They have generally been heavily modified by 

physical alterations, including dam construction and es-

tuarine barrages (Kim et al. 1998, Kim et al. 2004). Trophic 

states are largely nutrient-enriched due to the approxi-

mately forty million people residing within this relatively 

small area (Joo et al. 1997). Additionally, climate char-

acteristics, particularly the biased rainfall pattern (rainy 

summer and dry winter), are known to accentuate the 

effects of this freshwater eutrophication. Korean fresh-

water ecosystems, therefore, differ profoundly from, and 

perhaps are more complex to model than some other 

modified ecosystems.

MAJOR APPROACHES TO ECOLOGICAL MODELING

Conventional modeling

Statistical methods have been extensively employed 

for the analysis of datasets across different scientific re-

gimes. In the field of ecological research, statistical anal-

ysis has given rise to the increasingly important field of 

biostatistics (Zar 1999). In the infancy of this discipline, 

readily applicable linear and statistical approaches were 

employed to isolate and identify significant ecosystem 

properties. In particular, many ecologists have analyzed 

their experimental data primarily via multivariate anal-

yses such as principal component analysis (PCA) and 

canonical correspondence analysis. These ordination 

methods have commonly been employed in efforts to 

simplify the aquatic ecology data (Magadza 1980, Matta 

and Marshall 1984, van Tongeren et al. 1992, ter Braak 

and Verdonschot 1995, Romo et al. 1996). The limitations 

of these methods have been well established (e.g., horse-

shoe and arch effects). However, we do not discuss this 

in depth herein, since EC seldom deals with ordination 

methods, especially in ecological areas.

Second, a variety of time-series analyses have also 

been employed. In statistical approaches, multivariate 

linear regression (MLR) methods are probably the most 

popular. However, they are limited in several ways, in-

cluding the presence of strong distortion deriving from 

nonlinear relations attributable to outliers, heterosce-

dasticity, and colinearity (Zuur et al. 2009). Among more 

advanced linear methods, an autoregressive model is a 

type of random process employed in the prediction of 

certain types of values and phenomena. AutoRegressive 

(integrated) moving averages (ARMA/ARIMA) are repre-

sentatives, which are used for the prediction of continu-

ous values, particularly in time-series analyses. Harding 

and Perry (1997) predicted a long-term increase in phy-

toplankton biomass using ARMA, and Mishra and Desai 

(2006) conducted comparative experiments between 

linear statistical models and neural networks to forecast 

droughts on the basis of the precipitation index of the riv-

er basin. Recently, Jeong et al. (2008) also compared fore-

casting performances between ARIMA and autoregres-

sive ANN in predicting chlorophyll a. Generally, these 

approaches appear to have a somewhat limited ability to 

capture non-stationary and nonlinear peaks in ecologi-

cal data. Consequently, ecologists searching for better 

prediction methods have become increasingly interested 

in artificial intelligence methods, which are able to deal 

with data in highly nonlinear structures.

In addition to linear statistical approaches, mathemat-

ical and numerical modeling techniques provide some 

of the most common tools used for the quantitative de-

scription of a system, frequently relying on mass balance 

equations. In these models, all components employed to 

represent and evaluate the system are described in the 

initial stages of model construction. Each component of 

the system interconnects and interacts with others in the 

model, based on known causal relationships; the suc-

cession of the resultant values generates the results. The 

majority of such models are deterministic models, which 

are represented as individual-based and object-oriented 

processes. Commonly, such models consist of a set of 

ordinary differential equations that model the dynamic 

system. For example, Odum (1983) previously introduced 
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and exemplified many types of deterministic models to 

represent virtual ecosystems. In freshwater systems, a 

plethora of water quality models have already been de-

signed and developed. Håkanson and Boulion (2003) 

presented a general dynamic model to predict phyto-

plankton biomass and production, and Arhonditsis and 

Brett (2005) developed a more complex model that incor-

porated phyto- and zooplankton in Lake Washington. For 

assessments of streams and rivers, QUAL2E is one of the 

most popular water quality models (Brown and Barnwell 

1987). However, this technique has had some difficulties 

in cases in which the errors between predicted and ob-

served values have been too large for direct application 

to target river systems. Hence, Park and Lee (2002) added 

some tuning parameters, such as autochthonous sourc-

es, in order to improve their model predictions. Nonethe-

less, this technique is still limited in terms of its ability of 

predict specific values (e.g. Biochemical Oxygen Demand 

and chlorophyll a) relevant to water quality, particularly 

in regulated river systems (Choi et al. 2008). In addition 

to these QUAL-based models, POTAMON is a unidimen-

sional, non-stationary model that was designed to simu-

late potamoplankton. This is a more biologically friendly 

technique than QUAL2E, but does not reduce the errors 

inherent to the prediction of real observed values (Ever-

becq et al. 2001).
 

Empirical modeling 

The rapid advance of computer science has ushered 

in a host of new technologies relevant to a broad range 

of sciences since the 1990s. Newer technologies and 

paradigms of ecosystem modeling have been proposed, 

aiming to reduce the uncertainty in models arising from 

qualitative and quantitative imperfections in the ecologi-

cal data (Lek 2007). With the advent of computer-based 

modeling, data-collecting systems have also been devel-

oped and larger quantities of data have become avail-

able. This phenomenon has grown to encompass and 

delineate a wholly novel research field, referred to as eco-

logical informatics (Recknagel 2006). 

Computational algorithms take advantage of quick 

iterative calculations conducted with large volumes of 

data. Generally, empirical computational ecosystem 

models are designed to derive the best-fitting representa-

tion for an ecological dataset via a training and validation 

process (Fielding 1999). As many empirical computa-

tional models are constructed via data learning, they also 

fall under the rubrics of ‘machine learning’, ‘inductive 

model’ or ‘data-driven model’ (Recknagel 2006). Some 

representative examples include ANN, EC, decision tree 

models, fuzzy logic, etc. (Silvert 1997, Whigham and 

Recknagel 2001a, Goethals et al. 2003, Shan et al. 2006). 

Among these, ANN and EC may be classified as bio-

logically inspired methods, and ecological scientists 

have begun to take increasing interest in applying them 

to ecosystem modeling. Recknagel (2001) previously 

demonstrated some useful empirical models for ecologi-

cal time-series modeling, emphasizing the limitation in 

the complexity of deductive ecological models with their 

rigid structures. Jeong et al. (2003) described an empiri-

cal predictive model in a comparison between statistical 

linear models and evolutionary computation. Kim et al. 

(2007a) also interpreted ecological significance on the 

basis of an empirical predictive model.

EVOLUTIONARY COMPUTATIONS AND RELATED 
RESEARCH

Genetic algorithms (GA) are a mechanism originally 

inspired by natural evolution (Holland 1975), which op-

erate on strings of bits that are analogous to chromo-

somes. One unique attribute of the GA is that it adopts 

the evolutionary mechanisms of heritable variation and 

selection. Crossover and mutation processes in the GA 

cause variations in the population (chromosomes) over 

time. The individuals with poor fitness are excluded in 

the selection of the next generation’s parents. A near-

optimal solution eventually results from the iterated ap-

plication of these mechanisms.

Genetic programming (GP) is an extension of the GA 

concept, in which the individuals exhibit a more complex 

(labeled tree) structure, thereby allowing them to reflect 

more complex target solutions (Koza 1992), comparable 

with ANN. This may ease the process of creating new off-

spring populations from the two parents. New popula-

tions are generated by removing a branch from one tree 

and inserting it into another, or replacing it with a whole 

new branch, by analogy with genetic operators such as 

crossover and mutation (Fig. 1). The overall procedure of 

the GP is described in Fig. 2. Population size, P(t), refers 

to the initial number of candidate tree models at time t. 

Better individuals in the population are selected via re-

production and genetic operations. A single cycle of this 

process is referred to as a generation, with the computa-

tion eventually halting when a predetermined maximum 

number of generations is reached.

At the termination of the computation, GP supplies 

labeled tree structures that can, in principle, be under-
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stood by the user. This is an advantage of GP in terms of 

the readability of the model, whereas ANNs are a black-

box model (their meaning is not readily comprehensible 

to humans). Nonetheless, ANNs have been utilized more 

extensively in ecological research (Lek et al. 1996, Chon 

et al. 2001, Park et al. 2006b, Goethals et al. 2007), and 

relatively few ecologists have presented the results of 

predictive modeling using GP (Savic et al. 1999, Whigham 

and Recknagel 2001a). 

Table 1 presents some environmental and ecological 

research related to the applications of EC. International-

ly, EC has been fairly broadly employed in environmental 

research. In particular, GA has been generally perceived 

as a favorable tool for parameter optimization in the en-

gineering field, and has consequently come into com-

mon use for the constant fitting of complex structured 

models such as QUAL2K (Pelletier et al. 2006, Cho and 

Lee 2009). This methodology has been recently adopted 

for model optimization in Korea (Cho et al. 2004) and 

utilized for operational purposes in management policy 

(Lee and Chung 2004, Park et al. 2006a). Nonetheless, the 

applications of this technique in biological research are 

far fewer than those possible at an international level. 

Moreover, it appears that GA is more familiar to domes-

tic researchers than is GP. GP has been used only rarely 

in the environmental engineering field, although its so-

lutions are more transparent and extensible than GA. In 

rainfall-runoff modeling, GA-optimized tank structured 

(Paik et al. 2005) and GP-based self-automated models 

(Khu et al. 2001, Rabuñal et al. 2007) have been used in 

both domestic and international research.

Start

Initialize population, P(t = 0)

Selection from P(t)

Fitness evaluation

P(t) evolution  by crossover and mutation

t = t+1

End

Fig. 2. Computational procedure of genetic programming. 

Fig. 1. Basic structure and evolutionary principle of genetic programming (letters from a to e imply constant parameters, and V i means variable param-
eter for inputs).
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COMPARATIVE ADVANTAGES OF DIFFERENT 
MODELING APPROACHES

In assessing specific phenomena and ecological 

events, we must first gain insight into the properties of 

the different potential modeling methods. In this section, 

we compare the characteristics of each modeling meth-

od, delineating the advantages and disadvantages of the 

methods.

Statistical models and analyses are the most com-

monly used tools in many scientific disciplines. They are 

predicated on simple statistical relationships (generally 

correlations) between important parameters – most of-

ten linear, commonly also polynomial or logarithmic, but 

always in a pre-defined simple form. MLR models have 

been broadly employed for the prediction of responses 

to independent effects. However, ecological datasets fre-

quently contain many variables, particularly relative to 

the total number of instances; however, too many vari-

ables can conceal causal relationships, confusing at-

tempts to extract them via automated methods. Thus, 

it has been known for some time that the limitation of 

classical statistical models to the extraction of linear rela-

tionships meant that these models might miss important 

nonlinear relationships in ecosystems (Lek et al. 1996, 

Jeong et al. 2003).

Mathematical mechanistic models are used to con-

struct a representation of the ecosystem on the basis of 

known physical principles, most commonly the mass 

balance between various components within the eco-

system boundaries. In mechanistic models, it is impor-

tant to model all relevant components within the system 

(otherwise, the assumption of mass balance may be in-

valid). Such models have been particularly favored for 

decision-making by managers and administrators in the 

field of water resource operations, owing primarily to the 

completeness of the models; this means that very flexible 

operation, extrapolating beyond the range of previous 

data, might prove possible. However, they commonly evi-

dence very complicated architectures. As with statistical 

Table 1. Comprehensive environmental and ecological research in relation to evolutionary computations

  Issues and topics
Applications of evolutionary

computations/algorithms

Environmental issue Water quality Time-series forecasting of water quality
Parameter calibration 

Cao et al. (2006)
Cho and Lee (2009)
Cho and Sung (2004)
Kim et al. (2007b)
McKay et al. (2006)
Pelletier et al. (2006)
Whigham and Recknagel (2001b)

Flow/Runoff Real time runoff forecasting 
Modeling the rain effect on flow rate 
Parameter optimization of a given model

Khu et al. (2001)
Dorado et al. (2002)
Paik et al. (2005)
Rabuñal et al. (2007)
Savic et al. (1999)

Policy Finding an optimal operating policy in reservoirs 
Optimization of water quality monitoring networks 
Optimizing water consumption and wastewater networks /
Evaluation of riparian zones with satellite sense images

Ahmed and Sarma (2005)
Icaga (2005)
Lavric et al. (2005)
Lee and Chung (2004)
Makkeasorn et al. (2009)
Park et al. (2006a)

Ecological issue Plant Predicting patters of non-native plant invasions Underwood et al. (2004)

Plankton Algal bloom forecasting 
Prediction of cyanobacterial dynamics 
Ecological explanation based on EC modeling

Bobbin and Recknagel (2001)
Cao et al. (2008)
Jeong et al. (2003)
Kim et al. (2007a)
Recknagel et al. (2002)
Recknagel et al. (2008)
Welk et al. (2008)

Fish Predicting distributions of fish species McNyset (2005)

Invertebrate Prediction of spatial distributions Stockman et al. (2006)

Bird Prediction of probability of presence Peterson et al. (2002)

Others Assessment of machine learning with poorly predictable 
ecological data 

Introduction of inductive modeling methods 

Shan et al. (2006)
Whigham (2000)
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models, prediction uncertainty is apt to be large, owing 

to a lack of knowledge regarding the non-mass-balance 

components of the ecosystem. Generally, the prediction 

accuracy is not sufficiently high for practical applica-

tions. Thus, determining how to incorporate the benefits 

of mechanistic models, while dealing with the uncertain-

ty and nonlinearity of ecological data, is one of the most 

important issues in the field of ecological modeling.

By way of contrast with the above methods, empirical 

computational models can be employed in constructing 

a representation of an ecosystem on the basis of the ob-

served data. Their primary objective is usually to find the 

optimal model structure for the target ecosystem (‘best’ 

is usually taken to mean ‘lowest predictive error’) based 

on computations and reasoning from large quantities of 

data. The higher level of automation makes it feasible for 

end users to select and apply the most appropriate meth-

ods. In this regard, machine learning (ML) techniques are 

employed in order to extract information regarding the 

relevant interactions and relationships between environ-

mental entities, through the optimization of a model to 

fit the target ecosystem. A major premise in this regard 

is that data is inherently noisy, and thus this noise may 

mask weaker relationships within the data, thus making 

the development of a perfect and complete ecosystem 

model impossible; these methods are premised on find-

ing the best model justified by the specific data available. 

These methods are also thought to be particularly use-

ful when the important relationships within the target 

ecosystem are not fully known, or are too complicated to 

represent in a model, or when the quantity and quality 

of the data are insufficient for the construction of a com-

plete representation of the system (Table 2).

CASE STUDY: WATER QUALITY PREDICTION IN 
THE LOWER NAKDONG RIVER

Site description and methods

The study site (Mulgeum) was located within the lower 

part of the Nakdong River, the longest (ca. 525 km) riv-

er in South Korea (Fig. 3). The trophic state of the river 

is a persistent eutrophic level (chlorophyll a: 40 μg/L) 

throughout the year, except during the summer heavy 

rainfall season. Algal proliferations comprise two severe 

problems: 1) summer cyanobacterial blooms and 2) win-

ter diatom blooms (Ha et al. 1999, Ha et al. 2003). Large 

populations of people also reside in this area, and thus 

demand for water resources availability is relatively high.

A total of 17 input variables were used to generate a 

one-week-ahead predictive GP model to forecast algal 

Table 2. Comparison between conventional models and evolutionary computation

Attribute Conventional models Evolutionary computation

Flexibility of model structure Predetermined based on prior knowledge or 
statistically linear relationships

Flexible structures learnt from given datasets

Time-series analysis Past data use
Using one point of past data, by means of 

moving average or some time-series 
statistics

Future data prediction
A series of future prediction 

(e.g. n-consecutive days prediction; n is the
number of days interested in future) is 
possible based on the process built into the 
model

Past data use
Possible using time-lagged metadata 

rearrangement 
Future data prediction

One point prediction is possible 
(one-week- or month-ahead)

Capacity to handle unanticipated 
structure in the data

The model will only work in representing the 
real world when the process relationships in 
the model fit exactly to the actual processes

Genetic programming is often able to find 
a good model by efficiently searching a vast 
space of possible models

Amount of data required The process is already represented in the 
model, only validation data is needed

Requires much larger volumes of data in order 
to obtain solutions that generalize to new data

Ease of future model application Consecutive changes of an interested factor 
can be obtained only with small number of 
data

Simple and easy-to-understand structure of 
final outcome allowed users to apply the model 
to the world easily

Ecological/Environmental explanation The phenomena that the process does not 
represent cannot be explained

Various sensitivity analyses can discover 
previously unknown relationships between 
input and output parameters 

Research time required for model 
development

Longer time to determine the model 
structures and calibrations 

Relatively short time due to self-automation 
and adaptation



DOI: 10.5141/JEFB.2010.33.4.275 282

J. Ecol. Field Biol. 33(4): 275-288, 2010

abundance. Hydrological and meteorological data (flow 

rate, 4 dam discharges and rainfall) were acquired from 

the Korean Water Management Information System, and 

other data (water temperature, dissolved oxygen, pH, 

Secchi disc depth, conductivity, alkalinity, turbidity, ni-

trate, phosphate, silica and nitrogen:phosphorus ratio) 

were collected and measured via field sampling (Table 

3). The concentration of chlorophyll a was employed as 

a proxy for algal abundance as the output measure. Data 

from 1994 to 2008 were used for model construction (N 

= 782). 

In this study, we employed a GP program in the C++ 

language, which was originally designed by Cao et al. 

(2006). One key issue in this type of time-series predic-

tion is how to allocate data to training and the testing 

of the model (the two need to be kept separate for fair 

validation). We employed 702 data instances for training, 

with the remaining 80 reserved for testing; the partition 

of the data was conducted using the bootstrapping meth-

od (Adams et al. 1997) per trial (200 runs) to avoid te-

dious k-fold cross-validation. The initial population size 

was fixed at 5,000, and the maximum tree depth (length 

of the model structure, i.e., limit on model complexity) 

was 5. The GP system was allowed to construct solutions 

however it liked using the standard arithmetic operators 

(+, -, *, \) along with the exponential and logarithmic 

functions, arithmetic relations (>, =, <) and the Boolean 

if then else construct. Each GP run continued for a total 

of 100 generations, for a total of 200 runs overall. The root 

mean squared error (RMSE) was used as the fitness func-

tion in this experiment.

Table 3. Data used in evolutionary computation modeling (N = 782)

Variable (input/output)      Acronym Unit Mean Standard error

Flow rate FL m3/s                692 28.8

Andong dam discharge AD m3/s 34.4 1.0

Imha dam discharge IH m3/s 23.2 1.3

Namgang dam discharge NG m3/s 41.5 1.6

Hapcheon dam discharge HC m3/s 22.1 0.7

Rainfall Ra mm/d 3.5 0.2

Water temperature WT oC 16.3 0.3

Dissolved oxygen DO mg/L 106.6 0.9

pH pH 8.25 0.02

Secchi depth Se cm 80.0 1.0

Conductivity Co μs/cm 299.7 4.0

Alkalinity Al mg/L 53.1 0.6

Turbidity Tu NTU 15.4 1.4

Nitrate NO mg/L 2.58 0.031

Silica Si mg/L 5.60 0.134

Phosphate PO mg/L 0.056 0.001

Nitrogen:Phosphorus ratio NP 114.9 8.5

Chlorophyll a chl.a μg/L 38.3 1.5 

Fig. 3. Site location in the Nakdong River.
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RESULTS AND DISCUSSION

The best predictive model was generated via selection 

by both RMSE and the determination coefficient (r2). The 

optimal model contained eight input variables, and was 

as follows:

If            WT ≥ 33.4

Then    chl.a = DO + FL                                                               (1)

Else       
⋅+ - 3 + 407.4 40.6

= +
+ 2l | | + +

NO pH Se DO
chl.a

FLWT n Si Se AD
pH

Where, WT: water temperature

chl.a: chlorophyll a

DO: dissolved oxygen

FL: flow rate

AD: Andong dam discharge

Se: Secchi disc depth

Among our conditional criteria, water temperature 

(WT) was selected, as the pattern of chlorophyll a con-

centration is affected profoundly by temperature. At high 

temperatures, rule-based expression was rather simple, 

whereas more complicated expression patterns were pro-

duced by GP for normal and lower temperature ranges. 

The overall prediction error was 31.32 (RMSE) with r2 

= 0.45. Note that random data partitioning between the 

training and test was used. Fig. 4 shows the comparison 

between the observed and predicted values for chloro-

phyll a concentration. Although the predicted peak val-

ues were generally slightly underestimated, the model 

does accurately depict the dynamic pattern of chloro-

phyll a and also accurately matches the timing. If we re-

gard 40 μg/L and a high eutrophic level and as the criti-

cal indicators for water quality deterioration at the study 

site, the predictive model performs with an accuracy 

of 82.5% (212 of 257 cases) when employed as an early 

warning system for the management of the river ecosys-

tems. Additionally, the stability of the model predictions 

should be taken into consideration when assessing the 

application of the models. Error ranges for the predictive 

models generated by GP were 32.2 ± 1.5 (mean ± standard 

deviation) for training and 37.1 ± 12.9 for test (N = 200).

From the GP predictive models, we can observe that 

input variable selection provides important information. 

The frequency with which GP selects a variable in model 

construction is a good proxy for the degree of influence 

it exerts (Kim et al. 2007a). The selection frequencies for 

the different variables are quite diverse; their distribution 

is presented in Fig. 5. WT was most frequently selected, 

whereas pH and Secchi depth were also included in more 

than 50% of the models. In fresh water, these factors are 

highly influential on chlorophyll a concentrations, be-

cause algal growth is regulated markedly by tempera-

ture and light intensity (Jeong et al. 2001). Additionally, 

the more frequent selection of silica than nitrogen and 

phosphorus observed in this study is consistent with eco-

logical knowledge regarding the reoccurrence of winter 

diatom blooms in the lower Nakdong River (Ha and Joo 

2000). Besides, in reference to equation 1, lower silica 

Fig. 4. Comparative result between observed and predicted data for algal dynamics.
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concentrations result in increased algal biomass. Kilham 

et al. (1986) previously stressed that Stephanodiscus spe-

cies – a predominant diatom in the Nakdong River – re-

quired a high supply rate of phosphorus, but could grow 

successfully under low silica and light conditions, al-

though diatom species employ silica to build their shells 

(frustule). However, it is also reasonable to assume that 

high silica consumption induces increasing algal con-

centrations, particularly winter diatom species, as there 

is a time lag for algal growth via nutrient absorption (Kim 

et al. 2007a). Although we can understand and explain 

this effect, the importance of silica was somewhat coun-

ter to our expectations. This highlights one important 

advantage of GP: it can be used to extract unexpected in-

formation via learning in data-driven modeling. 

With regard to predictability, the most significant issue 

is how to acquire larger quantities of higher quality data. 

The data quality issue is related directly to how we can 

obtain data from stable analytical methodologies (i.e., 

high consistency in monitoring and measuring). In addi-

tion to the qualitative issue, empirical models such as EC 

require large quantities of data for data learning/training 

– perhaps larger quantities than are required for other 

methods. A great deal of time may be required to gain suf-

ficient data using traditional methods, but we anticipate 

that the rapid development of ecological monitoring and 

analysis systems will help to remedy this problem before 

too long. Data cleaning is a favorable option not only for 

the extraction of potentially useful information, but also 

for the removal of outliers and noise from data. Conse-

quently, it should prove possible to reduce predictive er-

rors through the appropriate data cleaning techniques.

APPLICABILITY OF INTEGRATED MODELS IN 
FUTURE ECOSYSTEMS RESEARCH

In ecological research, data accumulation is accelerat-

ing precipitously, as the measuring equipment used for 

ecosystems is under rapid and continuous development. 

A broad variety of tools and techniques for the analysis 

and assessment of ecological properties are continuous-

ly being created and deployed. Although we introduced 

a variety of analytical methodologies and categorized 

them, we are currently unable to pre-determine a spe-

cific framework of modeling approaches for a particular 

range of ecosystems. Each modeling approach has some 

useful properties for the analysis of a target ecosystem, 

which may prove valuable in the interpretation and un-

derstanding of that ecosystem. For instance, in a com-

parison between linear (PCA and correspondence analy-

sis) and nonlinear methods (self-organizing map, SOM), 

it may prove desirable to employ nonlinear methods in 

ecological patterns to prevent horseshoe (PCA) and arch 

effects (CA), but alternatives such as SOM do not allow 

for the control of gradient directions (Giraudel and Lek 

2001). Consequently, a combination or fusion of analyti-

cal techniques is desirable, particularly in the patterning 

and clustering of the structures of ecosystem popula-

tions and communities.

The applicability of different modeling methodolo-

gies is a matter under continual discussion, regardless 

of whether deductive or inductive approaches are em-

ployed. Previously, conventional modeling techniques 

involved a variety of standardized mathematical and sto-

chastic methods, such as differential equations, multi-

variate statistics, and regression models, whereas recent 

modeling approaches have been biased toward heavily 

computational models based on data warehousing and 

biologically inspired algorithms (Dolk 2000, Recknagel 

2006). Additionally, a few ecological scientists have re-

ported some promising results via hybrid approaches. 

Hybrid evolutionary algorithms, in which rule sets and 

algebraic equations define the model architecture but the 

content is selected via evolution, have been employed in 

the prediction of chlorophyll a concentrations in rivers 

and lakes (Kim et al. 2007a, Welk et al. 2008). Atanasova 

et al. (2006) reported good simulation results for chloro-

phyll a in Lake Kasumigaura using an assembly of ODEs. 

Additionally, some of the generic lake models (SALMO 

and Lake Washington model) have been upgraded and 

updated via GP techniques (Cetin et al. 2005, Cao et al. 

2008).

In studies of South Korean freshwater ecosystems, eco-
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Fig. 5. Selectivity of input variables in the genetic programming predic-
tive models. FL, flow rate; AD, Andong dam discharge; IH, Imha dam dis-
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rainfall; WT, water temperature; DO, dissolved oxygen; Se, Secchi depth; 
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logical scientists have undertaken only a limited amount 

of modeling via comparison with the data of hydrologi-

cal engineers. Thus far, the majority of such research has 

been biased toward specific analysis methods, particu-

larly statistically based approaches (Yoo 2002, An et al. 

2006, Kim et al. 2007c). Mechanistic models have been 

employed in a few applications, and these have focused 

principally on pollutant transportation (Shim et al. 1995, 

Park and Lee 2002). However, these models regarded the 

physicochemical impacts as more important than the bi-

ological influences. However, in the lakes and regulated 

rivers of South Korea, grazing activity by zooplankton is 

a critical component in determining water quality dur-

ing the dry winter period (Kim et al. 2000). Although the 

modified QUAL2E (QUAL-NIER) incorporated 31 vari-

ables in the model, zooplankton activity is not one of 

them (Choi et al. 2008). Comparatively, in regard to the 

use of empirical modeling approaches, only a few ML 

techniques have been applied thus far to the prediction 

of population and community dynamics in stream and 

river ecosystems (Chon et al. 2000, Jeong et al. 2006); the 

numbers of such studies are relatively small compared to 

other countries.

This imbalance in model application may limit future 

scientific research. Thus, interdisciplinary collaborations 

may prove an effective solution for understanding and 

improving ecological modeling. In turn, the develop-

ment of better ecological models is expected to allow for 

the development of effective and efficient strategies for 

water resource management.
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