• Title/Summary/Keyword: model concrete

Search Result 5,283, Processing Time 0.03 seconds

Vibration based damage identification of concrete arch dams by finite element model updating

  • Turker, Temel;Bayraktar, Alemdar;Sevim, Baris
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.209-220
    • /
    • 2014
  • Vibration based damage detection is very popular in the civil engineering area. Especially, special structures like dams, long-span bridges and high-rise buildings, need continues monitoring in terms of mechanical properties of material, static and dynamic behavior. It has been stated in the International Commission on Large Dams that more than half of the large concrete dams were constructed more than 50 years ago and the old dams have subjected to repeating loads such as earthquake, overflow, blast, etc.,. So, some unexpected failures may occur and catastrophic damages may be taken place because of theloss of strength, stiffness and other physical properties of concrete. Therefore, these dams need repairs provided with global damage evaluation in order to preserve structural integrity. The paper aims to show the effectiveness of the model updating method for global damage detection on a laboratory arch dam model. Ambient vibration test is used in order to determine the experimental dynamic characteristics. The initial finite element model is updated according to the experimentally determined natural frequencies and mode shapes. The web thickness is selected as updating parameter in the damage evaluation. It is observed from the study that the damage case is revealed with high accuracy and a good match is attained between the estimated and the real damage cases by model updating method.

Computing the Refined Compression Field Theory

  • Hernandez-Diaz, A.M.;Garcia-Roman, M.D.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.143-147
    • /
    • 2016
  • In recent years, some modifications were introduced in the stress-strain relationship of the steel in order to develop a more efficient shear model for reinforced concrete members. The last contribution in this sense corresponding to the Refined Compression Field Theory (RCFT, 2009); this theory proposed a steel constitutive model that has account the tension stiffening area prescribed by technical codes, what simplifies all the design process. However, under certain design conditions supported by such codes, the RCFT model does not provide a real (non-complex) solution for the steel yield strain when the prescribed tension stiffening area is considered; then the load-strain response cannot be computed. In this technical note, the tension stiffening area is fixed in order to guarantee the application of the embedded steel constitutive model for all the standard design range.

Analysis of composite steel-concrete beams using a refined high-order beam theory

  • Lezgy-Nazargah, M.;Kafi, L.
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1353-1368
    • /
    • 2015
  • A finite element model is presented for the analysis of composite steel-concrete beams based on a refined high-order theory. The employed theory satisfies all the kinematic and stress continuity conditions at the layer interfaces and considers effects of the transverse normal stress and transverse flexibility. The global displacement components, described by polynomial or combinations of polynomial and exponential expressions, are superposed on local ones chosen based on the layerwise or discrete-layer concepts. The present finite model does not need the incorporating any shear correction factor. Moreover, in the present $C^1$-continuous finite element model, the number of unknowns is independent of the number of layers. The proposed finite element model is validated by comparing the present results with those obtained from the three-dimensional (3D) finite element analysis. In addition to correctly predicting the distribution of all stress components of the composite steel-concrete beams, the proposed finite element model is computationally economic.

A Study on Shear Strength Prediction of RC Columns Strengthened with FRP Sheets (섬유 쉬트로 보강된 철근콘크리트 기둥의 전단강도 예측에 관한 연구)

  • 변재한;권성준;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.896-901
    • /
    • 2003
  • This paper describes a model on shear strength of RC columns strengthened with FRP sheets. In this study, we propose a confined concrete strength model of RC columns confined by transverse reinforcement as well as FRP sheet by introducing corresponding effective confinement coefficient for each confined concrete area. Then, a shear strength model of the confined RC columns is proposed by lower and upper bound limit analysis which are based on the truss-arch model theory and shear band failure theory, respectively. Along with shear test data obtained from strengthened column specimens, the developed analytical models are verified. The comparison shows that the proposed model can be used effectively for the prediction of both ultimate strength and required amount of strengthening in retrofit design for RC columns.

  • PDF

An Experimental Study on the Similitude of Structural Behaviors for Small-Scale Modeling of Reinforced Concrete Structures (철근콘크리트 축소모델의 구조거동 상사성에 관한 실험연구)

  • 이한선;우성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.401-407
    • /
    • 1996
  • A 2-bay 2-story moment-resisting reinforced concrete plane frame with seismic detail was designed. One 1/2.5-scale and one 1/10th model subassemblages were manufactured accoring to the required similitude law. Then the reversed load tests under the displacement control were performed statically to these subassemblages. The results of these tests were compared regarding to the similitude in the characteristics of structural behaviors such as strength., stiffness, energy dissipation, failure modes and local deformations. Based on these results, the following conclussions were drawn : (1) The strength of 1/10 model was very similar to that of 1/2.5 specimen. (2) The initial stiffness of 1/10 model appers to be approximately 2/3 of that of 1/2.5 specimen. (3) 1/10 model has therefore smaller energy dissipation capacity than 1/2.5 specimen. (4) Inelastic excursion mechanisms of 1/2.5 specimen and 1/10 model apper to be a little different.

  • PDF

The Load-Displacement Relationships of R/C Coupling Beams using Strut-and-tie Models (스트럿-타이 모델을 이용한 철근 콘크리트 연결보의 하중-변위관계)

  • Jang, Sang-Ki;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.139-142
    • /
    • 2005
  • This paper presents a deformable strut-and-tie model of determining the shear strengths and ultimate deformations of the shear-dominant reinforced concrete members. The proposed model originates from the strut-and-tie model concept and satisfies equilibrium, compatibility, constitutive laws, and the geometric conditions of shear deformation. This study attempts to apply deformation patterns to strut-and-tie models. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The validity and accuracy of the proposed model is then tested against available experimental data. The parameters reviewed include the ratios of truss action and arch action, the reinforcement ratios, and the shear span-depth ratio. It is expected that this model can be applied to displacement-based design methods.

  • PDF

Development of a Prediction Model for Formwork Pressure Exerted by Self-Compacting Concrete (자기충전 콘크리트의 거푸집 측압 예측 모델 개발)

  • Kwon, Seung-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.453-456
    • /
    • 2008
  • This study is underway to develop a prediction model for formwork pressure exerted by self-compacting concrete(SCC). Three major mechanisms related to formwork evolution over time were found, and mathematical modelling of each mechanism was made. A calculation method for real formwork pressure by using the mathematical formulae was also established. To verify predictive capability of the prediction model, a parametric study on parameters used in the model was performed. It was confirmed that the proposed model include the essential parameters that can simulate the real formwork pressure evolution over time.

  • PDF

A mesoscale model for concrete to simulate mechanical failure

  • Unger, Jorg F.;Eckardt, Stefan;Konke, Carsten
    • Computers and Concrete
    • /
    • v.8 no.4
    • /
    • pp.401-423
    • /
    • 2011
  • In this paper, a mesoscale model of concrete is presented, which considers particles, matrix material and the interfacial transition zone (ITZ) as separate constituents. Particles are represented as ellipsoides, generated according to a prescribed grading curve and placed randomly into the specimen. In this context, an efficient separation procedure is used. The nonlinear behavior is simulated with a cohesive interface model for the ITZ and a combined damage/plasticity model for the matrix material. The mesoscale model is used to simulate a compression and a tensile test. Furthermore, the influence of the particle distribution on the loaddisplacement curve is investigated.

A Study on Resistance of Chloride Ion Penetration in Ground Granulated Blast-Furnace Slag Concrete (고로슬래그 미분말 콘크리트의 염화물 침투 저항성에 관한 연구)

  • Song, Ha-Won;Kwon, Seung-Jun;Lee, Suk-Won;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.400-408
    • /
    • 2003
  • Chloride ion inside concrete destroys the so-called passive film surrounding reinforcing bars inside concrete so that the so-called salt attack accelerates corrosion which is the most critical factor for durability as well as structural safety of reinforced concrete structures. Recently, as a solution of the salt attack, the ground granulated blast-furnace slag(GGBFS) have been used as binder or blended cement more extensively. In this paper, characteristics of chloride ion diffusion for the GGBFS concrete, which is known to possess better resistance to damage due to the chloride ion penetration than ordinary portland cement(OPC) concrete possesses, are analyzed and a chloride ion diffusion model for the GGBFS concrete is proposed by modifying an existing diffusion model for the OPC concrete. The proposed model is verified by comparing diffusion analysis results using the model accelerated chloride penetration test results for concrete specimens as well as field test results for an RC bridge pier. Then, an optimal resistance condition to chloride penetration for the GGBFS concrete is obtained according to degrees of fineness and replacement ratios of the GGBFS concrete. The result shows that the GGBFS concrete has better resistance to chloride ion penetration than OPC concrete has and the resistance is more affected by the replacement ratio than the degree of fineness of the GGBFS.

Development of Tension Stiffening Models for Steel Fibrous High Strength Reinforced Concrete Members (강섬유보강 고강도 철근콘크리트 부재의 인장강성모델 개발)

  • 홍창우;윤경구;이정호;박제선
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.35-46
    • /
    • 1999
  • The steel fiber reinforced concrete may affect substantially to the tension stiffening at post cracking behavior. Even if several tension stiffening models exist, they are for plain and normal strength concrete. Thus, the development of tension stiffening models for steel fibrous high strength RC members are necessary at this time when steel fiber reinforced and high strength concretes are common in use. This paper presents tension stiffening effects from experimental results on direct tension members with the main variables such as concrete strength, concrete cover depth, steel fiber quantity and aspect ratio. The comparison of existing models against experimental results indicated that linear reduced model closely estimated the test results at normal strength level but overestimated at high strength level. Discontinuity stress reduced model underestimated at both strength levels. These existing models were not valid enough in applying at steel fibrous high strength concrete because they couldn't consider the concrete strength nor section area. Thus, new tension stiffening models for high strength and steel fiber reinforced concrete were proposed from the analysis of experimental results, considering concrete strength, rebar diameter, concrete cover depth, and steel fiber reinforcement.