Browse > Article
http://dx.doi.org/10.12989/cac.2011.8.4.401

A mesoscale model for concrete to simulate mechanical failure  

Unger, Jorg F. (Institute of Structural Mechanics, Bauhaus University Weimar)
Eckardt, Stefan (Institute of Structural Mechanics, Bauhaus University Weimar)
Konke, Carsten (Institute of Structural Mechanics, Bauhaus University Weimar)
Publication Information
Computers and Concrete / v.8, no.4, 2011 , pp. 401-423 More about this Journal
Abstract
In this paper, a mesoscale model of concrete is presented, which considers particles, matrix material and the interfacial transition zone (ITZ) as separate constituents. Particles are represented as ellipsoides, generated according to a prescribed grading curve and placed randomly into the specimen. In this context, an efficient separation procedure is used. The nonlinear behavior is simulated with a cohesive interface model for the ITZ and a combined damage/plasticity model for the matrix material. The mesoscale model is used to simulate a compression and a tensile test. Furthermore, the influence of the particle distribution on the loaddisplacement curve is investigated.
Keywords
mesoscale; concrete;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 Ananiev, S. and Ozbolt, J. (2004), "Plastic damage model for concrete in principal directions", in V. Li, C. Leung, K. Willam, & S. Billington (Eds.), Fracture Mech. Concrete Struct., 271-278.
2 Barenblatt, G. (1962), "The mathematical theory of equilibrium of cracks in brittle fracture", Adv. Appl. Mech., 7, 55-129.   DOI
3 Bazant, Z.P., Tabbara, M.R., Kazemi, M.T. and Pijaudier-Cabot, G. (1990), "Random particle model for fracture of aggregate or fiber composites", J. Eng. Mech., 116(8), 1686-1705.   DOI
4 Carol, I., Lopez, M. and Roa, O. (2002), "Micromechanical analysis of quasi-brittle materials using fracturebased interface elements", Int. J. Numer. Meth. Eng., 52(1-2), 193-215.
5 Carol, I., Rizzi, E. and Willam, K. (2001), "On the formulation of anisotropic elastic degradation : II. Generalized pseudo-rankine model for tensile damage", Int. J. Solids Struct., 38(4), 519-546.   DOI   ScienceOn
6 Carpinteri, A. and Chiaia, B. (1995), "Multifractal nature of concrete fracture surfaces and size effects on nominal fracture energy", Materiaux et Constructions, 28(182), 435-443.
7 Chiaia, B., Vervuurt, A. and Van Mier, J. (1997), "Lattice model evaluation of progressive failure in disordered particle composites", Eng, Fract. Mech., 57(2-3), 301-318.   DOI   ScienceOn
8 d'Addetta, G. A. (2002), Discrete models for cohesive fricional materials, Ph.D. thesis, University of Stuttgart, Institute for Structural Mechanics.
9 Dugdale, D. (1960), "Yielding of sheets containing slits", J. Mech. Phy. Solids, 8, 100-104.   DOI   ScienceOn
10 Eckardt, S. and Konke, C. (2006), "Simulation of damage in concrete structures using multiscale methods", in N. Bianic, R. de Borst, H. Mang, & G. Meschke (Eds.), Proceedings Intern. Conf. on Computational Modelling of Concrete Structures (EURO-C 2006).
11 Eckardt, S. and Konke, C. (2008), "Adaptive damage simulation of concrete using heterogeneous multiscale models", J. Algorithms Comput. Tech., 2(2), 275-297.   DOI   ScienceOn
12 Feldkamp, L.A., Goldstein, S.A., Parfitt, A.M., Jesion, G. and Kleerekoper, M. (1989), "The direct examination of three-dimensional bone architecture in vitro by computed tomography", J. Bone Miner. Res., 4(1), 3-11.
13 Garboci, E. (2002), "Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics: application to aggregates used in concrete", Cement Concrete Res., 32, 1621-1638.   DOI   ScienceOn
14 Grassl, P. and Bazant, Z.P. (2009), "Random lattice-particle simulation of statistical size effect in quasi-brittle structures failing at crack initiation", J. Eng. Mech., 135(2), 85-92.   DOI   ScienceOn
15 URL http://link.aip.org/link/?QEM/135/85/1.
16 Grassl, P. and Jirasek, M. (2004), "Damage-plastic model for concrete failure", Int. J. Solids Struct., 43(22-23), 7166-7196.
17 Grassl, P. and Jirasek, M. (2006), "Plastic model with non-local damage applied to concrete", Int. J. Numer. Anal. Meth. Geomech., 30(1), 71-90.   DOI   ScienceOn
18 Grassl, P. and Jirasek, M. (2010), "Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension", Int. J. Solids Struct., 47(7-8), 957-968.   DOI   ScienceOn
19 Hafner, S., Eckardt, S. and Konke, C. (2003), "A geometrical inclusion-matrix model for the finite element analysis of concrete at multiple scales", Proceedings of the 16th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering, Weimar.
20 Hafner, S., Eckardt, S., Luther, T. and Konke, C. (2006), "Mesoscale modeling of concrete: geometry and numerics", Comput. Struct., 84(7), 450-461.   DOI   ScienceOn
21 Hansen, E., Willam, K. and Carol, I. (2001), "A two-surface anisotropic damage/plasticity model for plain concrete", in R. de Borst, J. Mazars, G. Pijaudier-Cabot, & J. van Mier (Eds.), Fract. Mech. Concrete Struct., 549-556.
22 Hillerborg, A., Modeer, M. and Petersson, P. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782.   DOI   ScienceOn
23 Hollister, S.J. and Kikuchi, N. (1994), "Homogenization theory and digital imaging: a basis for studying the mechanics and design principles of bone tissue", Biotech. Bioeng., 43(7), 586-596.   DOI   ScienceOn
24 Hook, D. and McAree, P. (1990), Graphics gems, chap. Using sturm sequences to bracket real roots of polynomial equations, 416-422, San Diego, CA, USA, Academic Press Professional, Inc.
25 Jason, L., Huerta, A., Pijaudier-Cabot, G. and Ghavamian, S. (2006), "An elastic plastic damage formulation for concrete: application to elementary tests and comparison with an isotropic damage model", Comput. Method. Appl. M., 195(52), 7077-7092.   DOI   ScienceOn
26 Jirasek, M. (1998), "Nonlocal models for damage and fracture: comparison of approaches", Int. J. Sol. Struct., 35(31-32), 4133-4145.   DOI   ScienceOn
27 Ju, J. (1989), "On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects", Int. J. Solids Struct., 25(7), 803-833.   DOI   ScienceOn
28 Kessler-Kramer, C. (2002), Zugtragverhalten von Beton unter Ermüdungsbeanspruchung, Ph.D. thesis, Universität Karlsruhe (TH), Germany.
29 Krayani, A., Pijaudier-Cabot, G. and Dufour, F. (2009), "Boundary effect on weight function in nonlocal damage model", Eng. Fract. Mech., 76(14), 2217-2231.   DOI   ScienceOn
30 Leite, J., Slowik, V. and Mihashi, H. (2004), "Computer simulation of fracture processes of concrete using mesolevel models of lattice structures", Cement Concrete Res., 34(6), 1025-1033.   DOI   ScienceOn
31 Leite, J.P.B., Slowik, V. and Apel, J. (2007), "Computational model of mesoscopic structure of concrete for simulation of fracture processes", Comput. Struct., 85(17-18), 1293-1303.   DOI   ScienceOn
32 Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic damage model for concrete", Int. J. Solids Struct., 25(3), 299-326.   DOI   ScienceOn
33 Reuss, A. (1929), "Berechnung der $Flie{\ss}grenze$ von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle", Zeitschrift fur Angewandte Mathematikund Mechanik, 9(1), 49-58.   DOI
34 Nagai, G., Yamada, T. and Wada, A. (2000), "Three-dimensional nonlinear finite element analysis of the macroscopic compressive failure of concrete materials based on real digital image", Comp. Civil Build. Eng., 1, 449-456.
35 Nagano, Y., Ikeda, Y. and Kawamoto, H. (2004), "Application of 3D X-RAY CT to stress simulation analysis of porous materials with homogenization method", in C. Miyasaka, Y. Yokono, D. Bray, & Cho (Eds.), ASME/JSME Pressure Vessels and Piping Conference, San Diego, 484, 141-146.
36 Ortiz, M. and Pandolfi, A. (1999), "Finite-deformation irreversible cohesive elements for three-dimensional crackpropagation analysis", Int. J. Numer. Meth. Eng., 44(9), 1267-1282.   DOI   ScienceOn
37 Schlangen, E. (1993), Experimental and numerical analysis of fracture processes in concrete, Ph.D. thesis, Delft University of technology.
38 Schlangen, E. and van Mier, J.G.M. (1992), "Simple lattice model for numerical simulation of fracture of concrete materials and structures", Mater. Struct., 25(9), 534-542.   DOI
39 Simo, J. and Hughes, T. (1997), Computational inelasticity, Springer-Verlag.
40 Sukumar, N., Chopp, D., MoBes, N. and Belytschko, T. (2001), "Modelling holes and inclusions by level sets in the extended finite-element method", Comput. Method. Appl. M., 190, 6183-6200.   DOI   ScienceOn
41 Takano, N., Kimura, K., Zako, M. and Kubo, F. (2003), "Multi-scale analysis and microscopic stress evaluation for ceramics considering the random microstructures", JSME Int. J. Series A - Solid M., 46(4), 527-535.   DOI   ScienceOn
42 Tvergaard, V. (2003), "Cohesive zone representation of failure between elastic or rigid solids and ductile solids", Eng. Fract. Mech., 70, 1859-1868.   DOI   ScienceOn
43 Wang, W., Jiaye, W. and Myung-Soo, K. (2001), "An algebraic condition for the separation of two ellipsoids", Comput. Aided Geom. D., 18(6), 531-539.   DOI   ScienceOn
44 Unger, J.F. and Konke, C. (2006), "Simulation of concrete using the extended finite element method", in N. Bicanic, R. de Borst, H. Mang, & G. Meschke (Eds.), Proceedings Int. Conf. on Computational Modelling of Concrete Structures (EURO-C 2006), 239-247, Balkema.
45 van Vliet, M.R.A. and van Mier, J.G.M. (1995), "Softening behavior of concrete under uniaxial compression", in F. Wittman (Ed.), Fracture mechanics of concrete structures (FraMCoS-2, Zurich), 383-396.
46 Vervuurt, A. (1997), Interface fracture in concrete, Ph.D. thesis, Delft University of technology.
47 Wang, Z., Kwan, A. and Chan, H. (1999), "Mesoscopic study of concrete I: Generation of random aggregate structure and finite element mesh", Comput. Struct., 70(5), 533-544.   DOI   ScienceOn
48 Wittmann, F.H., Roelfstra, P.E. and Sadouki, H. (1985), "Simulation and analysis of composite structures", Mater. Sci. Eng., 68(2), 239-248.   DOI   ScienceOn
49 Wriggers, P. and Moftah, S.O. (2006), "Mesoscale models for concrete: homogenisation and damage behaviour", Finite Elem. Anal. Des., 42(7), 623-636.   DOI   ScienceOn
50 Zaitsev, Y.B. and Wittmann, F.H. (1981), "Simulation of crack propagation and failure of concrete", Mater. Struct., 14(5), 357-365.