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Abstract: In recent years, some modifications were introduced in the stress–strain relationship of the steel in order to develop a

more efficient shear model for reinforced concrete members. The last contribution in this sense corresponding to the Refined

Compression Field Theory (RCFT, 2009); this theory proposed a steel constitutive model that has account the tension stiffening

area prescribed by technical codes, what simplifies all the design process. However, under certain design conditions supported by

such codes, the RCFT model does not provide a real (non-complex) solution for the steel yield strain when the prescribed tension

stiffening area is considered; then the load-strain response cannot be computed. In this technical note, the tension stiffening area is

fixed in order to guarantee the application of the embedded steel constitutive model for all the standard design range.
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1. Introduction

The design and analysis of reinforced concrete members
subjected to shear may be performed taking into consider-
ation different strategies reported in the literature, among
several others (ASCE-ACE Committee 445 on Shear and
Torsion 1998; Hernández-Dı́az and Gil-Martı́n 2012; Jeong
and Kim 2014; Mofidi and Chaallal 2014). One of the most
widely known is the so-called Modified Compression Field
Theory (MCFT) (Vecchio and Collins 1986). In the MCFT,
the stress–strain relationship for the steel reinforcement is
assumed to be elastic-perfectly plastic, being the Young’s
modulus constant up to the yield strength (fy) and then zero
upon yielding at the crack location. To allow new increments
of shear force, MCFT introduces the notion of local shear
stress, and as a consequence, requires the check of equilib-
rium conditions for local shear stresses at the crack location
in order to ensure that the steel stress does not exceed the
steel yield strength.
A few years ago, Gil-Martı́n et al. (2009) proposed a new

steel constitutive model leading to the Refined Compression
Field Theory (RCFT). In the line of a few other shear the-
ories, such as the Rotating Angle-Softened Truss Model
(RA-STM, Belarbi and Hsu 1994), the RCFT proposes a
stress–strain relationship for the reinforcing bars stiffened by

concrete (‘‘embedded bar model’’); the novelty is that the
embedded bar stress–strain relationship is obtained imposing
equilibrium on the tension stiffening effect; so new formu-
lation for the steel model would no longer be needed
(compared with RA-STM) and the crack check can be
avoided (compared with MCFT). According to Gil-Martı́n
et al. (2009), from equilibrium of forces between a cracked
section and a generis section (see Fig. 1a), the RCFT pre-
dicts the average stress (along the bar between cracks) of an
embedded bar as a function of the average strain (i.e.,
measured on certain length including several cracks):
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where rs,av is the average tensile stress in steel (for longitudinal
or transverse reinforcement), As is the cross section of steel bar
(longitudinal or transverse), es is the average tensile strain in steel
andconcrete, fct is the tensile strength of concrete,Es is the elastic
modulus of reinforcement, emax is the apparent yield strain (or
average tensile strain when first yielding occurs at the crack
location, Fig. 1) andAc is the area of concrete bonded to the bar.
Technical codes (e.g., EHE 2008) usually define Ac as a value
equal to the rectangular area (tributary to and surrounding the
bar) over a distance not exceeding7.5Øfrom the center of thebar
(Fig. 1b), and Ø is the diameter of the bar. Hereafter, we refer to
Ac as the prescribed tension stiffening area. In Eq. (1) the
embedded bar stress–strain relationship is established for the
concrete tension stiffening model proposed by Bentz (2005).
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Numerical results obtained from RCFT for different tested
specimens (Gil-Martı́n et al. 2009; Palermo et al. 2013) show
a better fitting of the experimental results, in particular near
the peak point in the shear response curve, where the MCFT
significantly deviates from the experimental evidences.
Nevertheless, it can be proved that when the prescribed
tension stiffening area (Ac) is adopted, for certain specimens
(specifically those with high values of the ratio fct/q, being q
the reinforcement ratio) it is not possible to obtain a positive
real solution for the apparent yield strain (emax) defined in
Eq. (1). If all terms in the expression of the apparent yield
strain are moved to the right hand side, the following
function G is obtained:

emax ¼ fy
Es

�
fct

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:6M emax

p
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c ! G½fct; emax�

¼ ey � emax
� �� A0

cfct
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

3:6Memax
p

EsAs
ð2Þ

where ey is the strain corresponding to fy (i.e., ey = fy/Es). A
new variable, A0

c, has been introduced in Eq. (2) in order to
discuss the solvability of this equation in terms of the ratio
A0
c=Ac. To illustrate the effect of the tension stiffening area in

the solvability of the RCFT model, the top longitudinal rein-
forcement of a beam (specimen H75/2) tested in shear by
Cladera in 2002 has been considered. The top longitudinal bar
diameter is 8 mm, the side cover is 25 mm, the prescribed
tension stiffening area (according to EHE) is 9025 mm2, the
tensile strength of concrete (fct) is 4.5 MPa and the yield stress
of steel (fy) is 530 MPa. The function G [fct, emax] has been
represented in Fig. 2 for different values of A0

c, resulting in a
set of curves. For this specimen, the apparent yield strain (emax)
corresponds to the intersection points of these curves with the
abscissa fct = 4.50 MPa.
The interval adopted for the strength fct in Fig. 2 coincides

with the range established for this parameter by EC-2 (2002).

It can be seen that, for high values of A0
c (like A

0
c ¼ 0:7Ac and

A0
c ¼ 0:9Ac), the curve G [fct, emax] = 0 presents a knee that

breaks the bijection between fct and emax (problem of unique-
ness), or even, no solutions exists for emax (problem of exis-
tence), as it occurs by taking A0

c ¼ Ac in this specimen. In
relation to the problem of uniqueness, by continuity and taking
into account that emax = ey when A0

c ¼ 0 (cf. Gil-Martı́n et al.
2009), the actual value of emax is that of the solution closest to
the yield strain ey, that is, the greatest one of the two positive
real solutions of Eq. (2). However, the absence of solution in
the steel constitutive model proposed by RCFT indicates that
the equilibrium of internal forces along the cracked member
(see Fig. 1) is not verified, and therefore, the stress–strain
relationship for the steel must be corrected.

2. Fixing the Tension Stiffening Area

Hereafter, assume fct is a parameter, and abusing the nota-
tion, denote also byG [emax,A0

c] the abovementioned bivariate
function G [fct, emax]. In Fig. 3a the function G [emax, A0

c] has
been represented for three values of A0

c; this figure shows that
the equation G [emax, A0

c] = 0 ceases to have positive real
solutions when the value of A0

c is greater than the one that
makes the graphic of G tangent to the positive part of the
abscise axis. This turns out to happen when both functions
G[emax, A0

c] and G0 [emax, A0
c] vanish simultaneously, where:

G0½emax;A0
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is the derivative of G[emax, A0
c]. Solving the system of

equations {G[emax, A0
c] = 0, G0 [emax, A0

c] = 0} in the
unknowns emax and A0

c, the positive real solution for the
apparent yield strain is

Fig. 1 a Steel embedded bar in tension (adapted from Gil-Martı́n et al. 2009); b Area Ac of concrete bonded to the bar (according
to EHE-08).
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c] = 0 has, at least, a positive real solution. Let us denote k

the factor:
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In a general sense, the factor k represents the greatest portion
of the tension stiffening area which may be taken in order to

preserve the internal equilibrium of forces, in such a way that
as concrete participation increases, the steel stress diminishes.
According to this consideration, the effect of tension stiffening
area over the embedded steel behavior model is illustrated in
Fig. 3b for the case of specimen H75/2.

Several studies (Gil-Martı́n et al. 2009; Palermo et al.
2013; Hernández-Dı́az 2012; Palermo et al. 2014) show the
convenience of correcting the prescribed tension stiffening
area in order to adjustment the shear response of reinforced
concrete members, particularly for high shear strains, where
the technical codes underestimate the concrete tension
stiffening (Gil-Martı́n et al. 2009; Hernández-Dı́az 2012).
This strategy only can be performed for those values of A0

c

such that 0�A0
c=Ac � k. In order to display the usefulness of

the coefficient k, a widely validated shear test (Abersman
and Conte 1973), apud (Collins and Mitchell 1991;

Fig. 2 Specimen H 75/2 (Cladera Bohigas 2002): solvability graphical analysis for apparent yield strain (emax) in the top
longitudinal reinforcement.

Fig. 3 Parameters of RC section: fy = 530 MPa, fct = 4.50 MPa, As = 50.27 mm2 (1 Ø 8), Ac = 9025 mm2: a Function G[emax] for
different values of A0

c; the equation G[emax] = 0 has no positive real solutions when A0
c=Ac is greater than the limit value k.

b Effect of tension stiffening area over the embedded steel behavior model.
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Hernández Montes and Gil-Martı́n 2014), has been consid-
ered; to this aim, the load-strain curve of the tested specimen
has been predicted using the RCFT under two assumptions:
(1) neglecting the contribution of the concrete tension stiff-
ening area surrounding the reinforcement bars (i.e., A0

c & 0),
and (2) considering the limit value of the tension stiffening
area established by the coefficient k. These two curves have
been illustrated in Fig. 4 together the experimental shear
response obtained in (Abersman and Conte 1973). As
shown, the experimental results lie about halfway the shear
curve corresponding to the assumption (1) and the limit
curve corresponding to the coefficient k; in particular, for a
low-intermediate range of the shear strain, the limit tension
stiffening area proposed in this work coincides approxi-
mately with the experimental response. In this sense, the
factor k establishes a feasible (solvable) search domain for
the experimental adjustment of RCFT model using meta-
heuristic methods (cf. Hernández-Dı́az 2012), what
improves the computational effectiveness of this process.
In the preceding results, the tension-stiffening curve pro-

posed by Bentz has been assumed; however, the formulation
of coefficient k may be adapted to other tension stiffening
models proposed in the literature (cf. Vecchio and Collins
1986; Palermo et al. 2013; Stramandinoli et al 2008; Her-
nández-Montes et al. 2013; Wu and Gilbert 2008) Recently,
Hernández-Montes et al. (2013) proposed a tension stiffen-
ing curve, based on EC-2 formulation, which takes into
account both the reinforcement ratio and the mechanic
characteristics of the involved materials. Such expression is
only valid until the reinforcement reaches the yield strain (ey)
at any crack location. Once more, the apparent yield strain
(emax) may be obtained from internal equilibrium; in this
case, the above-defined function G adopts the following
expression (see Eq. (13) at Carbonell-Márquez et al. 2014):

G½emax; qeff � ¼ ey � emax
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2 Esemax

� �2 þ f 2ct 1þ nqeff
� �q

� qeff
2 Esemax

Esqeff

ð5Þ
where n = Es/Ec and qeff is the effective reinforcement ratio
(qeff ¼ As=A0

c). Equation (5) represents a monotonically

decreasing function over the whole strain domain;
therefore, in this case the value of A0

c must be only
constrained in order to avoid values of emax lower than the
average strain ect corresponding to the concrete tensile
strength (fct), then the expression of coefficient k is given by:
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@
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3. Conclusions

A practical relationship is obtained between the reinforce-
ment area (As), the tensile concrete strength (fct) and the yield
stress (fy) for a given value of the tension stiffening area (Ac).
These four parameters are not independent, and three of them
constrain the fourth one in order to preserve the internal
equilibrium of a cracked member. Therefore, such relation
must be satisfied in order to make operative the embedded
steel constitutive model for every reinforced concrete sec-
tion. Finally, this result is extensive to every structural system
involving cracked embedded reinforcing bars.
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