• Title/Summary/Keyword: mode coupling

Search Result 781, Processing Time 0.028 seconds

A Study on Upper Ocean Response to Typhoon Ewiniar (0603) and Its Impact (태풍 에위니아 (0603) 통과 후 상층해양 변동 특성과 영향)

  • Jeong, Yeong Yun;Moon, Il-Ju;Kim, Sung-Hun
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.205-220
    • /
    • 2013
  • Upper ocean response to typhoon Ewiniar (0603) and its impact on the following typhoon Bilis (0604) are investigated using observational data and numerical experiments. Data used in this study are obtained from the Ieodo Ocean Research Station (IORS), ARGO, and satellite. Numerical simulations are conducted using 3-dimensional Princeton Ocean Model. Results show that when Ewiniar passes over the western North Pacific, unique oceanic responses are found at two places, One is in East China Sea near Taiwan and another is in the vicinity of IORS. The latter are characterized by a strong sea surface cooling (SSC), $6^{\circ}C$ and $11^{\circ}C$ in simulation and observation, under the condition of typhoon with a fast translation speed (8m $s^{-1}$) and lowering intensity (970 hPa). The record-breaking strong SSC is caused by the Yellow Sea Bottom Cold Water, which produces a strong vertical temperature gradient within a shallow depth of Yellow Sea. The former are also characterized by a strong SSC, $7.5^{\circ}C$ in simulation, with a additional cooling of $4.5^{\circ}C$ after a storm's passage mainly due to enhanced and maintained upwelling process by the resonance coupling of storm translation speed and the gravest mode internal wave phase speed. The numerical simulation reveals that the Ewiniar produced a unfavorable upper-ocean thermal condition, which eventually inhibited the intensification of the following typhoon Bilis. Statistics show that 9% of the typhoons in western North Pacific are influenced by cold wakes produced by a proceeding typhoon. These overall results demonstrate that upper ocean response to a typhoon even after the passage is also important factor to be considered for an accurate intensity prediction of a following typhoon with similar track.

Effects of Numerical Modeling on Concrete Heterogeneity (콘크리트 비균질성에 대한 수치모델의 영향)

  • Rhee, In-Kyu;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.189-198
    • /
    • 2006
  • The composition of most engineering materials is heterogeneous at some degree. It is simply a question of scale at which the level of heterogeneity becomes apparent. In the case of cementitious granular materials such as concrete the heterogeneity appears at the mesoscale where it is comprised of aggregate particles, a hardened cement paste and voids. Since it is difficult to consider each separate particle in the topological description explicitly, numerical models of the meso-structure are normally confined to two-phase matrix particle composites in which only the larger inclusions are accounted for. 2-D and 3-D concrete blocks(Representative Volume Element, RVE) are used to simulating heterogeneous concrete meso-structures in the form of aggregates in the hardened mortar with nearly zero-thickness linear or planar interfaces. The numerical sensitivity of these meso-structures are Investigated with respect to the different morphologies of heterogeneity and the different level of coupling constant among fracture mode I, II and III. In addition, a numerically homogenized concrete block in 3-D using Hashin-Shtrikman variational bounds provides an evidence of the effective cracking paths which are quite different with those of heterogenous concrete block. However, their average force-displacement relationship show a pretty close match each other.

Vibration Analysis for the L-1 Stage Bladed-disk of a LP Steam Turbine (증기터빈 저압 L-1단 블레이드-디스크 연성 진동 특성 분석)

  • Lee, Doo-Young;Bae, Yong-Chae;Kim, Hee-Soo;Lee, Yook-Ryun;Kim, Doo-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.29-35
    • /
    • 2010
  • This paper studies causes of the L-1 blade damage of a low pressure turbine, which was found during the scheduled maintenance, in 500 MW fossil power plants. Many failures of turbine blades are caused by the coupling of aerodynamic forcing with bladed-disk vibration characteristics. In this study the coupled vibration characteristics of the L-1 turbine bladed-disk in a fossil power plant is shown for the purpose of identifying the root cause of the damage and confirming equipment integrity. First, analytic and experimental modal analysis for the bladed-disk at zero rpm as well as a single blade were performed and analyzed in order to verify the finite element model, and then steady stresses, natural frequencies and corresponding mode shapes, dynamic stresses were calculated for the bladed-disk under operation. Centrifugal force and steady steam force were considered in calculation of steady and dynamic stress. The proximity of modes to sources of excitation was assessed by means of an interference diagram to examine resonances. In addition, fatigue analysis was done for the dangerous modes of operation by a local strain approach. It is expected that these dynamic characteristics will be used effectively to identify the root causes of blade failures and to perform prompt maintenance.

Tunable Wavelength Filters Based on Long-Range Surface-Plasmon-Polariton waveguides (금속선 광 도파로를 이용한 장거리 표면-플라즈몬 파장가변 필터)

  • Kim, Ki-Cheol;Song, Seok-Ho;Won, Hyong-Sik;Lee, Gwan-Su
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.4
    • /
    • pp.371-380
    • /
    • 2006
  • We design and fabricate a novel tunable wavelength filter, which utilizes long-range surface plasmon-polaritons excited along nm-thick-metal strips. A gold metal strip, with $\sim$ cm length, 20 nm thickness, and $\sim$ 5$\mu$m width, is embedded in thick thermo-optic Polymer films supported by a silicon wafer. A dielectric Bragg grating structure is Placed on the metal strip, so that transmission signals at telecom wavelength are selected by thermal effect of the thermo-optic polymer. High extinction ratio of 25 dB and total insertion loss of $\sim$25 dB/cm can be measured by single-mode coupling of optical fibers. We also verify that wavelength tuning of the long-range surface plasmon-polariton filters can be achieved by electric current directly applied to the metal-strip waveguides.

Dynamic Model of a Passive Air-Breathing Direct Methanol Fuel Cell (수동급기 직접 메탄올 연료전지의 동적 모델)

  • Ha, Seung-Bum;Chang, Ikw-Hang;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.33-36
    • /
    • 2008
  • The transient behavior of a passive air breathing direct methanol fuel cell (DMFC) operated on vapor-feeding mode is studied in this paper. It generally takes 30 minutes after starting for the cell response to come to its steady-state and the response is sometimes unstable. A mathematical dynamic one-dimensional model for simulating transient response of the DMFC is presented. In this model a DMFC is decomposed into its subsystems using lumped model and divided into five layers, namely the anodic diffusion layer, the anodic catalyst layer, the proton exchange membrane (PEM), the cathodic catalyst layer and the cathodic diffusion layer. All layers are considered to have finite thickness, and within every one of them a set of differential-algebraic governing equations are given to represent multi-components mass balance, such as methanol, water, oxygen and carbon dioxide, charge balance, the electrochemical reaction and mass transport phenomena. A one-dimensional, isothermal and mass transport model is developed that captures the coupling between water generation and transport, oxygen consumption and natural convection. The single cell is supplied by pure methanol vapor from a methanol reservoir at the anode, and the oxygen is supplied via natural air-breathing at the cathode. The water is not supplied from external source because the cell uses the water created at the cathode using water back diffusion through nafion membrane. As a result of simulation strong effects of water transport were found out. The model analysis provides several conclusions. The performance drop after peak point is caused by insufficiency of water at the anode. The excess water at the cathode makes performance recovery impossible. The undesired crossover of the reactant methanol through the PEM causes overpotential at the cathode and limits the feeding methanol concentration.

  • PDF

Automatic Processing Techniques of Rotorcraft Flight Data Using Data Mining (회전익항공기 운동모델 개발을 위한 데이터마이닝을 이용한 비행데이터 자동 처리 기법)

  • Oh, Hyeju;Jo, Sungbeom;Choi, Keeyoung;Roh, Eun-Jung;Kang, Byung-Ryong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.823-832
    • /
    • 2018
  • In general, the fidelity of the aircraft dynamic model is verified by comparison with the flight test results of the target aircraft. Therefore, the reference flight data for performance comparisons must be extracted. This process requires a lot of time and manpower to extract useful data from the vast quantity of flight test data containing various noise for comparing fidelity. In particular, processing of flight data is complex because rotorcraft have high non-linearity characteristics such as coupling and wake interference effect and perform various maneuvers such as hover and backward flight. This study defines flight data processing criteria for rotorcraft and provides procedures and methods for automated processing of static and dynamic flight data using data mining techniques. Finally, the methods presented are validated using flight data.

Effect of Ta Doping on Piezoelectric Properties of Lead-Free (K0.5Na0.5)NbO3 Ceramics ((K0.5Na0.5)NbO3 세라믹스의 압전 특성에 대한 Ta 도핑 효과)

  • Kang, Jin-Kyu;Lee, Yong-Hui;Heo, Dae-Jun;Lee, Hyun-Young;Dinh, Thi Hinh;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.292-296
    • /
    • 2014
  • We investigated the effect of Ta doping on the dielectric and piezoelectric properties of lead-free $(K_{0.5}Na_{0.5})NbO_3$ ceramics prepared using a conventional ceramic processing. X-ray diffraction analysis revealed that Ta was perfectly substituted into Nb-sites in the range of 0 to 20 at%. As Ta content in the KNN increased, the sinterability of KNN ceramics was significantly degraded while the Ta doping enhanced the piezoelectric constant $d_{33}$, planar mode piezoelectric coupling coefficient ($k_p$), and electromechanical quality factor ($Q_m$). The highest values for $d_{33}$, $k_p$, and $Q_m$ was found to be 156 pC/N, 0.37, and 155, respectively.

Robust Slewing Control of A Flexible Space Structure using Sliding Surface (슬라이딩 평면을 이용한 유연우주비행체의 강인 선회제어)

  • Kim, Jin Hyeong;Hong, Chang Ho;Seok, Jin Yeong;Bang, Hyo Chung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2003
  • This paper presents a robust slewing control of a flexible space structure based on sliding surface design. A sliding surface is designed for a single-axis rest-to-rest slewing in view of target angle, target angular velocity, and root monent of the flexible appendage. In comparison with the Lypunov control law, both controllers guarantee the stability and command tracking capabilities for nominal system. It is also shown that the designed control law provides further robustness to internal/external uncertainties. Extending the results of a single-axis maneuver, a sliding mode control law was sought for an arbitrary three-axis maneuver. Quaternion was used to determine the attitude of a space structure and sliding surfaces were designed for each axis, thereby a robust control law was derived considering the coupling effects between each rotational axis during the maneuver. Several numerical examples were demonstrated to show the effectiveness of the designed control law.

Turret location impact on global performance of a thruster-assisted turret-moored FPSO

  • Kim, S.W.;Kim, M.H.;Kang, H.Y.
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.265-287
    • /
    • 2016
  • The change of the global performance of a turret-moored FPSO (Floating Production Storage Offloading) with DP (Dynamic Positioning) control is simulated, analyzed, and compared for two different internal turret location cases; bow and midship. Both collinear and non-collinear 100-yr GOM (Gulf of Mexico) storm environments and three cases (mooring-only, with DP position control, with DP position+heading control) are considered. The horizontal trajectory, 6DOF (degree of freedom) motions, fairlead mooring and riser tension, and fuel consumptions are compared. The PID (Proportional-Integral-Derivative) controller based on LQR (linear quadratic regulator) theory and the thrust-allocation algorithm which is based on the penalty optimization theory are implemented in the fully-coupled time-domain hull-mooring-riser-DP simulation program. Both in collinear and non-collinear 100-yr WWC (wind-wave-current) environments, the advantage of mid-ship turret is demonstrated by the significant reduction in heave at the turret location due to the minimal coupling with pitch mode, which is beneficial to mooring and riser design. However, in the non-collinear WWC environment, the mid-turret case exhibits unfavorable weathervaning characteristics, which can be reduced by employing DP position and heading controls as demonstrated in the present case studies. The present study also reveals the plausible cause of the failure of mid-turret Gryphon Alpha FPSO in milder environment than its survival condition.

Characterization of the Material Properties of 0.68Pb ($Mg_{1}$3/$Nb_{2}$3/)$O_3$-0.32PbT$iO_3$ Single Crystals Grown by the Solid-State-Crystal-Growth Method (고상단결정법으로 성장시킨 0.68Pb ($Mg_{1}$3/$Nb_{2}$3/)$O_3$-0.32PbT$iO_3$ 압전단결정의 물성평가)

  • 이상한;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.103-108
    • /
    • 2004
  • In this paper, all the materials constants of the PMN-32%PT single crystals grown by the solid state crystal growth method were measured by the resonance method. PMN-PT crystals of tetragonal symmetry have six elastic constants, three piezoelectric constants and two dielectric constants for their independent material constants. These materials constants were extracted from six sets of crystal samples of each different geometry to have different vibration modes respectively. Measured results showed that the crystal has larger electromechanical coupling factor k/sub 33/ (∼86%) and piezoelectric constant d/sub 33/ (∼1200pC/N) than conventional piezoceramics. Validity of the measurement was confirmed through comparison of the results with the impedance spectrum from finite element analysis of the samples and the results measured with a commercial do meter.