DOI QR코드

DOI QR Code

Effect of Ta Doping on Piezoelectric Properties of Lead-Free (K0.5Na0.5)NbO3 Ceramics

(K0.5Na0.5)NbO3 세라믹스의 압전 특성에 대한 Ta 도핑 효과

  • Kang, Jin-Kyu (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Yong-Hui (School of Materials Science and Engineering, University of Ulsan) ;
  • Heo, Dae-Jun (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Hyun-Young (School of Materials Science and Engineering, University of Ulsan) ;
  • Dinh, Thi Hinh (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan)
  • 강진규 (울산대학교 첨단소재공학부) ;
  • 이용희 (울산대학교 첨단소재공학부) ;
  • 허대준 (울산대학교 첨단소재공학부) ;
  • 이현영 (울산대학교 첨단소재공학부) ;
  • 딘치힌 (울산대학교 첨단소재공학부) ;
  • 이재신 (울산대학교 첨단소재공학부)
  • Received : 2014.03.28
  • Accepted : 2014.04.14
  • Published : 2014.05.01

Abstract

We investigated the effect of Ta doping on the dielectric and piezoelectric properties of lead-free $(K_{0.5}Na_{0.5})NbO_3$ ceramics prepared using a conventional ceramic processing. X-ray diffraction analysis revealed that Ta was perfectly substituted into Nb-sites in the range of 0 to 20 at%. As Ta content in the KNN increased, the sinterability of KNN ceramics was significantly degraded while the Ta doping enhanced the piezoelectric constant $d_{33}$, planar mode piezoelectric coupling coefficient ($k_p$), and electromechanical quality factor ($Q_m$). The highest values for $d_{33}$, $k_p$, and $Q_m$ was found to be 156 pC/N, 0.37, and 155, respectively.

Keywords

References

  1. J. Rödel, W. Jo, K. T. P. Seifert, E. M. Anton, and T. Granzow, J. Am. Ceram. Soc., 92, 1153 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
  2. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakumura, Nature, 432, 84 (2004). https://doi.org/10.1038/nature03028
  3. J. F. Li, K. Wang, F. Y Zhu, L. Q. Cheng, and F. Z. Yao, J. Am. Ceram. Soc., 96, 3677 (2013). https://doi.org/10.1111/jace.12715
  4. K. Wang and J. F. Li, J. Adv. Ceram., 1, 24 (2012). https://doi.org/10.1007/s40145-012-0003-3
  5. E. Hollenstein, M. Davis, D. Damjanovic, and N. Setter, Appl. Phys. Lett., 87, 182905 (2005). https://doi.org/10.1063/1.2123387
  6. Y. P. Guo, K. Kakimoto, and H. Ohsato, Mater. Lett., 59, 241 (2005). https://doi.org/10.1016/j.matlet.2004.07.057
  7. P. Zhao, B. P. Zhang, and J. F. Li, Appl. Phys. Lett., 91, 172901 (2007). https://doi.org/10.1063/1.2794405
  8. M. S. Kim, S. J. Jeong, and J. S. Song, J. Am. Ceram. Soc., 90, 3338 (2007). https://doi.org/10.1111/j.1551-2916.2007.01893.x
  9. L. Li, Y. Q. Gong, L. J. Gong, H. Dong, X. F. Yi, and X. J. Zheng, Mater. Design, 33, 362 (2012). https://doi.org/10.1016/j.matdes.2011.03.023
  10. K. Wang and J. F. Li, Appl. Phys. Lett., 91, 262902 (2007). https://doi.org/10.1063/1.2825280
  11. S. Wongsaenmai, S. Ananta, and R. Yimnirun, Ceram. Int., 38, 147 (2012). https://doi.org/10.1016/j.ceramint.2011.06.049
  12. K. C. Singh, C. Jiten, R. Laishram, O. P. Thakur, and D. K. Bhattacharya, J. Alloys Compd., 496, 717 (2010). https://doi.org/10.1016/j.jallcom.2010.02.181
  13. Y. Zhou, M. Guo, C. Zhang, and M. Zhang, Ceram. Int., 35, 3253 (2009). https://doi.org/10.1016/j.ceramint.2009.05.018
  14. K. Uchino, Advanced Piezoelectric Materials: Science and Technology (Elsevier, Netherland, 2010) p. 206.
  15. B. Jaffe, W. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic, New York, 1971) p. 92.
  16. D. Berlincourt, in Ultrasonic Transducer Materials: Piezoelectric Crystals and Ceramics, ed., O. E. Mattiat (Plenum, London, 1971) Ch. 2.
  17. L. Q. Cheng, K. Wang, F. Z. Yao, F. Zhu, and J. F. Li, J. Am. Ceram. Soc., 96, 2693 (2013). https://doi.org/10.1111/jace.12497