DOI QR코드

DOI QR Code

Tunable Wavelength Filters Based on Long-Range Surface-Plasmon-Polariton waveguides

금속선 광 도파로를 이용한 장거리 표면-플라즈몬 파장가변 필터

  • Kim, Ki-Cheol (Department of Physics, Hanyang University) ;
  • Song, Seok-Ho (Department of Physics, Hanyang University) ;
  • Won, Hyong-Sik (Central Research Institute of Samsung Electro-Mechanics Company) ;
  • Lee, Gwan-Su (Central Research Institute of Samsung Electro-Mechanics Company)
  • 김기철 (한양대학교 물리학과 마이크로광학 연구실) ;
  • 송석호 (한양대학교 물리학과 마이크로광학 연구실) ;
  • 원형식 ((주)삼성전기 중앙연구소) ;
  • 이관수 ((주)삼성전기 중앙연구소)
  • Published : 2006.04.01

Abstract

We design and fabricate a novel tunable wavelength filter, which utilizes long-range surface plasmon-polaritons excited along nm-thick-metal strips. A gold metal strip, with $\sim$ cm length, 20 nm thickness, and $\sim$ 5$\mu$m width, is embedded in thick thermo-optic Polymer films supported by a silicon wafer. A dielectric Bragg grating structure is Placed on the metal strip, so that transmission signals at telecom wavelength are selected by thermal effect of the thermo-optic polymer. High extinction ratio of 25 dB and total insertion loss of $\sim$25 dB/cm can be measured by single-mode coupling of optical fibers. We also verify that wavelength tuning of the long-range surface plasmon-polariton filters can be achieved by electric current directly applied to the metal-strip waveguides.

금으로 된 금속선 광 도파로를 따라 속박되는 장거리 표면 플라즈몬을 이용하여 파장 가변 필터를 설계하고 제작하였다. 실리콘 기판 위에 제작된 금속선 도파로는 두 층의 열광학 폴리머 사이에 샌드위치 구조로 끼어 있도록 설계되었다. 도파로의 바로 윗면에는 유전체로 된 Bragg 회절격자가 적합한 주기로 제작되어, 중심 파장이 광통신 파장대 (1520$\sim$1570 nm)에 있으면서 높은 소광률($\sim$25 dB)을 갖는 파의 반사가 가능했고, 전체손실은 25 dB/cm 이하로 나타났다. 또한, 제작된 파장 가변 필터가 폴리머의 열-광학적 특성에 의해 파장가변 필터 소자로서의 응용이 가능함을 확인했으며, 금속선 광 도파로에 직접 연결된 전극 구조에 동시에 가해준 전류에 의해 파장이 가변 될 수 있음을 실험적으로 확인하였다.

Keywords

References

  1. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin, German, 1988), pp. 4-37
  2. J. J. Burke and G. I. Stegeman, 'Surface-polariton-like waves guided by thin, lossy metal films,' Phys. Rev. B, vol. 33., no. 8, pp. 5186-5201, 1986 https://doi.org/10.1103/PhysRevB.33.5186
  3. J. Yoon, S. H. Song, C. Oh, and P. S. Kim, 'Backpropagating modes of surface polaritons on a crossnegative interface,' Opt. Express, vol. 13, no. 2, pp. 417-427, 2005 https://doi.org/10.1364/OPEX.13.000417
  4. 윤재웅, 송석호, 오차환, 김필수, '금속과 왼손잡이 메타-물질의 경계면에서 형성되는 표면 폴라리톤의 전파 특성,' 한국광학회지, vol. 15, no. 2, pp. 89-99, 2004
  5. D. Sarid, 'Long-range surface-plasma waves on very thin metal films,' Phys. Rev. Lett., vol. 47, no. 26, pp. 1927-1930, 1981 https://doi.org/10.1103/PhysRevLett.47.1927
  6. P. Berini, 'Plasmon-polariton modes guided by a metal film of finite width,' Opt. Lett., vol. 24, no. 15, pp. 1011-1013, 1999 https://doi.org/10.1364/OL.24.001011
  7. P. Berini, 'Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,' Phys. Rev. B, vol. 61. no. 15, pp. 10484-10503, 2000 https://doi.org/10.1103/PhysRevB.61.10484
  8. S. I. Bozehevonyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, 'Waveguiding in surface plasmon polariton band gap structures,' Phys. Rev. Lett., vol. 86, no. 14, pp. 3008-3011, 2001 https://doi.org/10.1103/PhysRevLett.86.3008
  9. B. Lamprecht, J. R. Krenn, G. Schider, H. Hitlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, 'Surface plasmon propagation in microscale metal stripe,' Appl. Phys. Lett., vol. 79, no. 1, pp. 51-53, 2001 https://doi.org/10.1063/1.1380236
  10. S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, 'Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,' Opt. Express, vol. 13, no. 12, pp. 4674-4682, 2005 https://doi.org/10.1364/OPEX.13.004674
  11. I. R. Hooper and J. R. Sambles, 'Surface plasmon polaritons on thin-slab metal gratings,' Phys. Rev. B, vol. 67., 235404, 2003 https://doi.org/10.1103/PhysRevB.67.235404
  12. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, 'Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,' Opt. Lett., vol. 28, no. 20, pp. 1870-1872, 2003 https://doi.org/10.1364/OL.28.001870
  13. J. Chilwell and I. Hodgkinson, 'Thin-films fieldtransfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides,' J. Opt. Soc. Am. A, vol. 1, no. 7, pp. 742-753, 1984 https://doi.org/10.1364/JOSAA.1.000742
  14. C. Chen, P. Berini, D. Feng, S. Tanez, and V. P. Tzolov, 'Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,' Opt. Express, vol. 7, no. 8, pp. 260-272, 2000 https://doi.org/10.1364/OE.7.000260
  15. K. Okamoto, Fundamentals of optical waveguides (Academic Press, New Yor, USA, 2000), pp. 26-27
  16. B. Wang and G. P. Wang, 'Surface plasmon polariton propagation in nanoscale metal gap waveguides,' Opt. Lett., vol. 29, no. 17, pp. 1992-1994, 2004 https://doi.org/10.1364/OL.29.001992
  17. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, 'Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,' Appl. Phys. Lett., vol. 82, no. 5, pp. 668-670, 2003 https://doi.org/10.1063/1.1542944
  18. H. S. Won, K. C. Kim, S. H. Song, C. Oh, and P. S. Kim, 'Vertical coupling of long-range surface plasmon polaritons,' Appl. Phys. Lett., vol. 88, 011110, 2006 https://doi.org/10.1063/1.2159558
  19. Q. Lai, W. Hunziker, and H. Melchior, 'Low-power compact $2{\times}2$ thermooptic silica-on-silicon waveguide switch with fast response,' IEEE Photon. Technol. Lett., vol. 10, no. 5, pp. 681-683, 1998 https://doi.org/10.1109/68.669248
  20. S. S. Lee, Y. S. Jin, and Y. S. Son, 'Variable optical attenuator based on a cutoff modulator with tapered waveguides in polymers,' J. Lightwave Technol., vol. 17, no. 12, pp. 2556-2561, 1999 https://doi.org/10.1109/50.809677
  21. T. Nikolajsen and K. Leosson, 'Surface plasmon polariton based modulators and switches operating at telecom wavelengths,' Appl. Phys. Lett., vol. 85, no. 24, pp. 5833-5835, 2004 https://doi.org/10.1063/1.1835997
  22. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, 'Inline extinction modulator based on long-range surface plasmon polaritons,' Opt. Commun., vol. 244, pp. 455-459, 2004 https://doi.org/10.1016/j.optcom.2004.09.045