Browse > Article
http://dx.doi.org/10.4313/JKEM.2014.27.5.292

Effect of Ta Doping on Piezoelectric Properties of Lead-Free (K0.5Na0.5)NbO3 Ceramics  

Kang, Jin-Kyu (School of Materials Science and Engineering, University of Ulsan)
Lee, Yong-Hui (School of Materials Science and Engineering, University of Ulsan)
Heo, Dae-Jun (School of Materials Science and Engineering, University of Ulsan)
Lee, Hyun-Young (School of Materials Science and Engineering, University of Ulsan)
Dinh, Thi Hinh (School of Materials Science and Engineering, University of Ulsan)
Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.27, no.5, 2014 , pp. 292-296 More about this Journal
Abstract
We investigated the effect of Ta doping on the dielectric and piezoelectric properties of lead-free $(K_{0.5}Na_{0.5})NbO_3$ ceramics prepared using a conventional ceramic processing. X-ray diffraction analysis revealed that Ta was perfectly substituted into Nb-sites in the range of 0 to 20 at%. As Ta content in the KNN increased, the sinterability of KNN ceramics was significantly degraded while the Ta doping enhanced the piezoelectric constant $d_{33}$, planar mode piezoelectric coupling coefficient ($k_p$), and electromechanical quality factor ($Q_m$). The highest values for $d_{33}$, $k_p$, and $Q_m$ was found to be 156 pC/N, 0.37, and 155, respectively.
Keywords
Piezoelectric; Ceramics; Ferroelectric; Potassium sodium niobate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Rödel, W. Jo, K. T. P. Seifert, E. M. Anton, and T. Granzow, J. Am. Ceram. Soc., 92, 1153 (2009).   DOI   ScienceOn
2 Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakumura, Nature, 432, 84 (2004).   DOI   ScienceOn
3 J. F. Li, K. Wang, F. Y Zhu, L. Q. Cheng, and F. Z. Yao, J. Am. Ceram. Soc., 96, 3677 (2013).   DOI   ScienceOn
4 K. Wang and J. F. Li, J. Adv. Ceram., 1, 24 (2012).   DOI   ScienceOn
5 E. Hollenstein, M. Davis, D. Damjanovic, and N. Setter, Appl. Phys. Lett., 87, 182905 (2005).   DOI   ScienceOn
6 Y. P. Guo, K. Kakimoto, and H. Ohsato, Mater. Lett., 59, 241 (2005).   DOI   ScienceOn
7 P. Zhao, B. P. Zhang, and J. F. Li, Appl. Phys. Lett., 91, 172901 (2007).   DOI   ScienceOn
8 M. S. Kim, S. J. Jeong, and J. S. Song, J. Am. Ceram. Soc., 90, 3338 (2007).   DOI   ScienceOn
9 K. Wang and J. F. Li, Appl. Phys. Lett., 91, 262902 (2007).   DOI   ScienceOn
10 S. Wongsaenmai, S. Ananta, and R. Yimnirun, Ceram. Int., 38, 147 (2012).   DOI   ScienceOn
11 K. C. Singh, C. Jiten, R. Laishram, O. P. Thakur, and D. K. Bhattacharya, J. Alloys Compd., 496, 717 (2010).   DOI   ScienceOn
12 Y. Zhou, M. Guo, C. Zhang, and M. Zhang, Ceram. Int., 35, 3253 (2009).   DOI   ScienceOn
13 L. Q. Cheng, K. Wang, F. Z. Yao, F. Zhu, and J. F. Li, J. Am. Ceram. Soc., 96, 2693 (2013).   DOI   ScienceOn
14 K. Uchino, Advanced Piezoelectric Materials: Science and Technology (Elsevier, Netherland, 2010) p. 206.
15 B. Jaffe, W. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic, New York, 1971) p. 92.
16 D. Berlincourt, in Ultrasonic Transducer Materials: Piezoelectric Crystals and Ceramics, ed., O. E. Mattiat (Plenum, London, 1971) Ch. 2.
17 L. Li, Y. Q. Gong, L. J. Gong, H. Dong, X. F. Yi, and X. J. Zheng, Mater. Design, 33, 362 (2012).   DOI