• Title/Summary/Keyword: mode converter

Search Result 1,214, Processing Time 0.034 seconds

A Study on Exhaust Emission and Engine Performance Characteristics of Heavy-Duty Diesel Engine with Continuously Regenerating DPF (Continuously Regenerating DPF장착에 따른 대형디젤기관의 기관성능 및 배출가스특성에 관한 연구)

  • Rha, W.Y.;Oh, S.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.11-15
    • /
    • 2006
  • The increasing numbers of automobiles keep causing air-pollution problems worse than ever. Nowadays, research on catalyst converter and filter trap as a modern technology is very active because PM is designated as a major cancer material and stringent regulations on this are necessary and required. This research emphasized on the development of Continuously Regenerating DPF technology which was the best particulate matters removing technology of current existing technology because of its superior comparability and high applicability. This experimental study has been conducted with equipped and unequipped a Continuously Regenerating DPF ona displacement 7,000cc diesel engine and compared in terms of engine performance and emission. To measure the emission, D-13 mode is applied and measured quantities of the exhaust gases, particularly in CO, HC, PM, and NOx. Therefore, this research is focused on engine performance and characteristics on exhaust emissions with the application of a Continuously Regenerating DPF in a heavy-duty diesel vehicle.

  • PDF

NONLINEAR OUTPUT VOLTAGE CONTROLOF PWM DC-DC CONBERTERS BY FEEDBACK LINERIZATION

  • Jo, Byeong-Rim;Min, Byung-Hoon;Choi, Hang-June
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.223-226
    • /
    • 1995
  • New output voltage control technique based on the simple feedback linearization is proposed. The system states are first divided into fast states and slow states. Then, the control stage is composed of the fast inner current control loop and the slow outer voltage control loop. From the inner loop, the average control is derived by the sliding mode concept and it is inserted into the dynamic equations of the slow states in the outer loop. Applying the feedback linearization technique to the obtained large-signal models of the PWM dc-dc converters, linearized large-signal models are obtained for the slow states. With this technique, the output voltage controller of the PWM dc-dc converters can be designed easily in the global state space and its control performance can also be much improved.

  • PDF

Full CMOS Single Supply PLC SoC ASIC with Integrated Analog Front-End

  • Nam, Chul;Pu, Young-Gun;Kim, Sang-Woo;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.2
    • /
    • pp.85-90
    • /
    • 2009
  • This paper presents a single supply PLC SoC ASIC with a built-in analog Front-end circuit. To achieve the low power consumption along with low cost, this PLC SoC employs fully CMOS Analog Front End (AFE) and several LDO regulators (LDOs) to provide the internal power for Logic Core, DAC and Input/output Pad driver. The receiver part of the AFE consists of Pre-amplifier, Gain Amplifier and 1 bit Comparator. The transmitter part of the AFE consists of 10 bit Digital Analog Converter and Line Driver. This SoC is implemented with 0.18 ${\mu}m$ 1 Poly 5 Metal CMOS Process. The single supply voltage is 3.3 V and the internal powers are provided using LDOs. The total power consumption is below 30 mA at stand-by mode to meet the Eco-Design requirement. The die size is 3.2 $\times$ 2.8 $mm^{2}$.

A CMOS Duty Cycle Corrector Using Dynamic Frequency Scaling for Coarse and Fine Tuning Adjustment (코오스와 파인 조정을 위한 다이나믹 주파수 스케일링 기법을 사용하는 CMOS 듀티 사이클 보정 회로)

  • Han, Sangwoo;Kim, Jongsun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.142-147
    • /
    • 2012
  • This paper presents a mixed-mode CMOS duty-cycle corrector (DCC) circuit that has a dynamic frequency scaling (DFS) counter and coarse and fine tuning adjustments. A higher duty-cycle correction accuracy and smaller jitter have been achieved by utilizing the DFS counter that reduces the bit-switching glitch effect of a digital to analog converter (DAC). The proposed circuit has been designed using a 0.18-${\mu}m$ CMOS process. The measured duty cycle error is less than ${\pm}1.1%$ for a wide input duty-cycle range of 25-75% over a wide freqeuncy range of 0.5-1.5 GHz.

A Low-Voltage Low-Power Opamp-Less 8-bit 1-MS/s Pipelined ADC in 90-nm CMOS Technology

  • Abbasizadeh, Hamed;Rikan, Behnam Samadpoor;Lee, Dong-Soo;Hayder, Abbas Syed;Lee, Kang-Yoon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.416-424
    • /
    • 2014
  • This paper presents an 8-bit pipelined analog-to-digital converter. The supply voltage applied for comparators and other sub-blocks of the ADC were 0.7V and 0.5V, respectively. This low power ADC utilizes the capacitive charge pump technique combined with a source-follower and calibration to resolve the need for the opamp. The differential charge pump technique does not require any common mode feedback circuit. The entire structure of the ADC is based on fully dynamic circuits that enable the design of a very low power ADC. The ADC was designed to operate at 1MS/s in 90nm CMOS process, where simulated results using ADS2011 show the peak SNDR and SFDR of the ADC to be 47.8 dB (7.64 ENOB) and 59 dB respectively. The ADC consumes less than 1mW for all active dynamic and digital circuitries.

Analysis on the Characteristics of Magnetic Amplifier for Multi-output Postregulation (다출력 전원회로의 안정화를 위한 자기증폭기의 특성해석)

  • Kim, Cherl-Jin;Lee, Kwan-Yong;Hong, Dae-Shik;Kim, Young-Tae;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.133-135
    • /
    • 2004
  • As a result of the recent advances in magnetic materials, the Magnetic Amplifier(Magamp) technique is one of the reliable and cost-effective postregulation method for multiple-output power supply. This is true for high-current postregulated output since at highter output current the efficiency of linear postregulation is unacceptably low, while the complexity of more efficient switch mode postregulator is associated with a significant cost. Magamp have some advantages of higher power density, simple control circuit, good regulation, high frequency and high performance. In this paper, Operation principle of proposed approach and a performance of magamp control circuit with TL431 is described. The comparative analysis of magamp circuit and buck regulator circuit with 20W load condition is conducted. Experimental verifications on multi-output flyback converter are conducted. Simulations and experimental results show that the proposed approach is efficiency and voltage regulation of the auxiliary output is excellent.

  • PDF

PFC and Zero Torque Control of SRM for EV Battery Charging (EV용 충전 인덕터용 PFC 및 제로 토크제어)

  • Rashidi, A.;Namazi, M.M.;Saghaian-nezhad, S.M.;Lee, D.H.;Ahn, J.W
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.652-654
    • /
    • 2015
  • Integrated switched reluctance motor drive as an electric vehicle battery charger is presented in this paper. The SRM, which is used as the traction power in the driving mode, is used in the charge circuit to improve the power factor of charging system. The charging circuit can share the power switches of the asymmetric converter and phase windings of SRM to charge the battery, and can reduce the size and cost of the system in the plug-in system. To keep the rotor at standstill, zero torque control method is proposed. Since the inductances of the SRM windings are not same at any stop position, the charger controller controls the reference current to satisfy the total charging current with PFC and zero torque condition. A novel cubic equation method is proposed as a current reference distributor of the charging controller. Simulations are performed by MATLAB software and results satisfy the Effectiveness of proposed battery charging system.

  • PDF

Maximum Output Power Control for Stand-Alone Wind Power Generation System Using Cage-Type Induction Generators (농형 유도발전기를 이용한 독립형 풍력발전시스템의 최대출력제어)

  • 김형균;이동춘;석줄기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.73-80
    • /
    • 2004
  • In this paper, a maximum output power control of stand-alone cage-type induction generator systems for wind power generation is proposed. The induction generator is operated in a vector-controlled mode, which is excited with d-axis current and of which torque is controlled with q-axis current. The generator speed is controlled by this torque, along which speed the generator produces the maximum output power. The generated power charges the battery bank for energy storage through an ac/dc PWM converter. The proposed scheme has been verified for the wind turbine simulator system which consists of M-G set.

A Study on the Operational Characteristics of PFC at Instantaneous Power Interrupt (순시 정전 시 역률 개선 회로의 동작 특성에 관한 연구)

  • 이해돈;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.390-396
    • /
    • 2004
  • Recently, there have been Increasing demands for high power factor and low harmonic distortion in the current drawn from utility. The harmonic limits imposed by international standards. It need the PFC techniques in order to reduce line current harmonics and comply with the standards. The average current control method that is the most proper PFC control method in a switching power supply of middle and high power has been used mostly to PFC control method. However, the switching device of PFC circuit has frequently destructed at power return after instantaneous power interrupt. Therefore, this paper have verified the cause of this problems and proposed the solution through simulation and experiment

Current-Source PWM Inverter Equipped with DSP for Photovoltaic System (DSP를 이용한 태양광 발전 시스템용 전류형 PWM 인버터)

  • 박성준;허권행;강필순;김철우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.437-442
    • /
    • 2002
  • This paper presents a current-source-inverter based on a buck-boost configuration md its application for residential photovoltaic system. The proposed circuit has five switches. Among them, only one switch acts as chopping, and the other determine the polarity of output; therefore, it can reduce the switching loss. Because the input inductor current is operated on the discontinuous conduction mode, high power factor can be achieved without additional input current controller. So the overall system shows a simple structure. The operational modes are analysed in depth, and then it was verified through the experimental results using a 150[W] prototype equipped with digital signal processor TMS320F241.