• 제목/요약/키워드: modal strain

검색결과 198건 처리시간 0.023초

변위응답의 측정으로부터 변형률응답을 예측하는 방법의 특성 (Characteristics of the Method to Predict Strain Responses from the Measurements of Displacement Responses)

  • 이건명;고재흥
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.844-848
    • /
    • 2005
  • A method to predict the strain responses from the measurements of displacement responses is considered. The method uses a transformation matrix which is composed of a displacement modal matrix and a strain modal matrix. The method can predict strains at points where displacements are not measured as well as at displacement measuring points. One of the drawbacks of the strain prediction method is that the displacement responses must be measured at many points on a structure simultaneously. This difficulty can be overcome by measuring the FRFs between displacements at a reference point and other point in sequence with a two channel measuring equipment This procedure is based on the assumption that the characteristics of excitation applied to the structure do not vary with time.

  • PDF

모드변형에너지를 기저로 하는 위상최적화기법을 사용한 보의 고유진동수 최대화 (The Natural Frequency Maximization of Beam Structures by using Modal Strain Energy based Topology Optimization Technique)

  • 이상진;배정은
    • 한국공간구조학회논문집
    • /
    • 제7권4호
    • /
    • pp.89-96
    • /
    • 2007
  • 위상최적화기법을 이용하여 보의 기본고유진동수 최대화문제를 수행하였다. 도입된 위상최적화기법은 구조물의 모드형상에 의해서 발생되는 모드변형에너지를 바탕으로 한다. 최소화하고자하는 모드변형에너지를 목적함수로 하고 구조물의 초기부피를 제약함수로 채택하였다. 최적정기준법을 바탕으로 한 크기조절알고리듬을 유한요소내부에 존재하는 셀의 빈공간의 크기를 조절하기 위해 도입하였다. 세 가지의 다른 경계조건을 가지는 보를 이용하여 자유진동모드형상에 저항하는 보의 최적위상을 조사하였다. 수치해석결과로부터 도입된 위상최적화기법을 이용하여 도출한 보의 최적위상은 초기구조물에 비해 저차의 자유진동수가 크게 증가하는 것으로 나타났으며 특히 모드변형에너지를 이용하는 위상최적화의 경우에는 구조물의 기본진동수를 최대화하는데 매우 효과적인 것으로 나타났다.

  • PDF

Modal flexibility based damage detection for suspension bridge hangers: A numerical and experimental investigation

  • Meng, Fanhao;Yu, Jingjun;Alaluf, David;Mokrani, Bilal;Preumont, Andre
    • Smart Structures and Systems
    • /
    • 제23권1호
    • /
    • pp.15-29
    • /
    • 2019
  • This paper addresses the problem of damage detection in suspension bridge hangers, with an emphasis on the modal flexibility method. It aims at evaluating the capability and the accuracy of the modal flexibility method to detect and locate single and multiple damages in suspension bridge hangers, with different level of severity and various locations. The study is conducted numerically and experimentally on a laboratory suspension bridge mock-up. First, the covariance-driven stochastic subspace identification is used to extract the modal parameters of the bridge from experimental data, using only output measurements data from ambient vibration. Then, the method is demonstrated for several damage scenarios and compared against other classical methods, such as: Coordinate Modal Assurance Criterion (COMAC), Enhanced Coordinate Modal Assurance Criterion (ECOMAC), Mode Shape Curvature (MSC) and Modal Strain Energy (MSE). The paper demonstrates the relative merits and shortcomings of these methods which play a significant role in the damage detection ofsuspension bridges.

편광유지 광자결정 광섬유 기반 편광 간섭형 스트레인 센서의 센싱 광섬유 길이 의존성 연구 (Study on Dependence of Polarization-Maintaining Photonic Crystal Fiber-Based Polarimetric Strain Sensor on Sensing Fiber Length)

  • 노태규;이용욱
    • 조명전기설비학회논문지
    • /
    • 제27권2호
    • /
    • pp.1-6
    • /
    • 2013
  • In this paper, we implemented a polarimetric strain sensor using a Sagnac birefringence interferometer composed of a polarization-maintaining photonic crystal fiber (PM-PCF). By changing the length of the PM-PCF employed as the sensor head of the proposed sensor, the length dependence of the strain sensitivity was investigated. With respect to 5.0-, 7.5-, and 10.0-cm-long PM-PCFs, strain measurements were done in a measurement range of $0{\sim}6m{\varepsilon}$, and strain sensitivities of ~2.04, ~1.92, and ${\sim}1.73pm/{\mu}{\varepsilon}$ were obtained, respectively. If an ideal PM-PCF with no length dependence of a modal birefringence is used for the proposed sensor, the strain sensitivity is independent of the length of the sensor head (PM-PCF). In the practical PM-PCF used in experiments, however, a shorter PM-PCF has a higher length dependence of the modal birefringence due to its imperfectness and nonuniformity of the internal structure, resulting in a higher length dependence of the strain sensitivity.

Three-dimensional Topology Optimization using the CATO Algorithm

  • LEE, Sang Jin;BAE, Jung Eun
    • Architectural research
    • /
    • 제11권1호
    • /
    • pp.15-23
    • /
    • 2009
  • An application of the constrained adaptive topology optimization (CATO) algorithm is described for three-dimensional topology optimization of engineering structures. The enhanced assumed strain lower order solid finite element (FE) is used to evaluate the values of objective and constraint functions required in optimization process. The strain energy (SE) terms such as elastic and modal SEs are employed as the objective function to be minimized and the initial volume of structures is introduced as the constraint function. The SIMP model is adopted to facilitate the material redistribution and also to produce clearer and more distinct structural topologies. The linearly weighted objective function is introduced to consider both static and dynamic characteristics of structures. Several numerical tests are tackled and it is used to investigate the performance of the proposed three-dimensional topology optimization process. From numerical results, it is found to be that the CATO algorithm is easy to implement and extremely applicable to produce the reasonable optimum topologies for three dimensional optimization problems.

PZT 소자의 정압전 응답을 이용한 보 구조물의 모드 변형에너지기반 손상 모니터링 (Modal Strain Energy-based Damage Monitoring in Beam Structures using PZT's Direct Piezoelectric Response)

  • 호 득 유이;이포영;김정태
    • 한국전산구조공학회논문집
    • /
    • 제25권1호
    • /
    • pp.91-99
    • /
    • 2012
  • 본 연구에서는 PZT 소자의 정압전 효과에 의한 동적 응답신호를 이용하는 보 구조물 손상 모니터링 기법을 제안하였다. 특히, 모드 변형에너지기반 보 구조물 손상 모니터링에 PZT 정압전 응답신호를 입력자료로 활용하는 방안에 대한 연구에 주안점이 있다. 먼저, PZT 소자의 정압전 효과 및 동적 변형률 응답의 이론적 배경을 요약하였다. 다음으로, 모드 변형에너지기반 보 구조물 손상위치 모니터링 기법을 제시하였다. 제시된 기법의 적합성을 검증하기 위해, 캔틸레버 보 모형을 대상으로 강제진동 실험을 수행하였으며, 세 종류의 센서(가속도계, PZT 센서, 변형률계)를 통해 동적 응답신호가 계측되었다. 손상 전후에 계측된 이들 진동신호들을 사용하여 모드 변형에너지기반의 손상위치 모니터링이 수행되었다.

Complex modes in damped sandwich beams using beam and elasticity theories

  • Ahmad, Naveed;Kapania, Rakesh K.
    • Advances in aircraft and spacecraft science
    • /
    • 제2권1호
    • /
    • pp.57-76
    • /
    • 2015
  • We investigated complex damped modes in beams in the presence of a viscoelastic layer sandwiched between two elastic layers. The problem was solved using two approaches, (1) Rayleigh beam theory and analyzed using the Ritz method, and (2) by using 2D plane stress elasticity based finite-element method. The damping in the layers was modeled using the complex modulus. Simply-supported, cantilever, and viscously supported boundary conditions were considered in this study. Simple trigonometric functions were used as admissible functions in the Ritz method. The key idea behind sandwich structure is to increase damping in a beam as affected by the presence of a highly-damped core layer vibrating mainly in shear. Different assumptions are utilized in the literature, to model shear deformation in the core layer. In this manuscript, we used FEM without any kinematic assumptions for the transverse shear in both the core and elastic layers. Moreover, numerical examples were studied, where the base and constraining layers were also damped. The loss factor was calculated by modal strain energy method, and by solving a complex eigenvalue problem. The efficiency of the modal strain energy method was tested for different loss factors in the core layer. Complex mode shapes of the beam were also examined in the study, and a comparison was made between viscoelastically and viscously damped structures. The numerical results were compared with those available in the literature, and the results were found to be satisfactory.

Analysis of a Building Structure with Added Viscoelastic Dampers

  • Lee, Dong-Guen;Hong, Sung-Il;Kim, Jin-Koo
    • 한국지진공학회논문집
    • /
    • 제2권3호
    • /
    • pp.27-35
    • /
    • 1998
  • Steel structures with added viscoelastic dampers are analysed to investigat their behavior under earthquake excitation. The direct integration method, which produces exact solution for the non-proportional or non-classical damping system, is used throughout the analysis. The results from modal strain energy method are also provided for comparison. Then a new analytical a, pp.oach, based on the rigid floor diaphragm assumption and matrix condensation technique, is introduced, and the results are compared with those obtained from direct integration method and modal strain energy method. The well known phenomenon, that the effectiveness of the viscoelastic dampers depends greatly on the location of the dampers, is once again confirmed in the analysis. It is also found that the modal strain energy method generaly underestimates the responses obtained from the direct integration method, especially when the dampers are placed in only a part of the building. The proposed method turns out to be very efficient with considerable saving in computation this and reasonably accurate considering the reduced degrees of freedom.

  • PDF

Structural damage identification based on genetically trained ANNs in beams

  • Li, Peng-Hui;Zhu, Hong-Ping;Luo, Hui;Weng, Shun
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.227-244
    • /
    • 2015
  • This study develops a two stage procedure to identify the structural damage based on the optimized artificial neural networks. Initially, the modal strain energy index (MSEI) is established to extract the damaged elements and to reduce the computational time. Then the genetic algorithm (GA) and artificial neural networks (ANNs) are combined to detect the damage severity. The input of the network is modal strain energy index and the output is the flexural stiffness of the beam elements. The principal component analysis (PCA) is utilized to reduce the input variants of the neural network. By using the genetic algorithm to optimize the parameters, the ANNs can significantly improve the accuracy and convergence of the damage identification. The influence of noise on damage identification results is also studied. The simulation and experiment on beam structures shows that the adaptive parameter selection neural network can identify the damage location and severity of beam structures with high accuracy.

Indirect displacement monitoring of high-speed railway box girders consider bending and torsion coupling effects

  • Wang, Xin;Li, Zhonglong;Zhuo, Yi;Di, Hao;Wei, Jianfeng;Li, Yuchen;Li, Shunlong
    • Smart Structures and Systems
    • /
    • 제28권6호
    • /
    • pp.827-838
    • /
    • 2021
  • The dynamic displacement is considered to be an important indicator of structural safety, and becomes an indispensable part of Structural Health Monitoring (SHM) system for high-speed railway bridges. This paper proposes an indirect strain based dynamic displacement reconstruction methodology for high-speed railway box girders. For the typical box girders under eccentric train load, the plane section assumption and elementary beam theory is no longer applicable due to the bend-torsion coupling effects. The monitored strain was decoupled into bend and torsion induced strain, pre-trained multi-output support vector regression (M-SVR) model was employed for such decoupling process considering the sensor layout cost and reconstruction accuracy. The decoupled strained based displacement could be reconstructed respectively using box girder plate element analysis and mode superposition principle. For the transformation modal matrix has a significant impact on the reconstructed displacement accuracy, the modal order would be optimized using particle swarm algorithm (PSO), aiming to minimize the ill conditioned degree of transformation modal matrix and the displacement reconstruction error. Numerical simulation and dynamic load testing results show that the reconstructed displacement was in good agreement with the simulated or measured results, which verifies the validity and accuracy of the algorithm proposed in this paper.