Browse > Article
http://dx.doi.org/10.12989/sss.2019.23.1.015

Modal flexibility based damage detection for suspension bridge hangers: A numerical and experimental investigation  

Meng, Fanhao (Robotics Institute, Beihang University)
Yu, Jingjun (Robotics Institute, Beihang University)
Alaluf, David (Active Structures Laboratory, Universite Libre de Bruxelles)
Mokrani, Bilal (Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool)
Preumont, Andre (Active Structures Laboratory, Universite Libre de Bruxelles)
Publication Information
Smart Structures and Systems / v.23, no.1, 2019 , pp. 15-29 More about this Journal
Abstract
This paper addresses the problem of damage detection in suspension bridge hangers, with an emphasis on the modal flexibility method. It aims at evaluating the capability and the accuracy of the modal flexibility method to detect and locate single and multiple damages in suspension bridge hangers, with different level of severity and various locations. The study is conducted numerically and experimentally on a laboratory suspension bridge mock-up. First, the covariance-driven stochastic subspace identification is used to extract the modal parameters of the bridge from experimental data, using only output measurements data from ambient vibration. Then, the method is demonstrated for several damage scenarios and compared against other classical methods, such as: Coordinate Modal Assurance Criterion (COMAC), Enhanced Coordinate Modal Assurance Criterion (ECOMAC), Mode Shape Curvature (MSC) and Modal Strain Energy (MSE). The paper demonstrates the relative merits and shortcomings of these methods which play a significant role in the damage detection ofsuspension bridges.
Keywords
suspension bridge hangers; stochastic subspace identification; modal flexibility; damage detection;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Jaishi, B. and Ren, W.X. (2006), "Damage detection by finite element model updating using modal flexibility residual", J. Sound Vib., 290(1-2), 369-387.   DOI
2 Mei, D.P. (2017), "Structural health monitoring-based dynamic behavior evaluation of a long-span high-speed railway bridge", Smart Struct. Syst., 20(2), 197-205.   DOI
3 Mrabet, E., Abdelghani, M. and Ben Kahla, N. (2014), "A new criterion for the stabilization diagram used with stochastic subspace identification methods: an application to an aircraft skeleton", J. Shock Vib., 2014.
4 Meruane, V. and Heylen, W. (2011), "An hybrid real genetic algorithm to detect structural damage using modal properties", Mech. Syst. Signal Pr., 25(5), 1559-1573.   DOI
5 Ni, Y.Q., Zhou, H.F., Chan, K.C. and Ko, J.M. (2008), "Modal flexibility analysis of cable-stayed Ting Kau Bridge for damage identification", Comput.-Aided Civil Infrastruct. Eng., 23(3), 223-236.   DOI
6 Pandey, A.K. and Biswas, M. (1994), "Damage detection in structures using changes in flexibility", J. Sound Vib., 169(1), 3-17.   DOI
7 Pandey, A.K., Biswas, M. and Samman, M.M. (1991), "Damage detection from changes in curvature mode shapes", J. Sound Vib., 145(2), 321-332.   DOI
8 Peeters, B. and De Roeck, G. (1999), "Reference-based stochastic subspace identification for output-only modal analysis", Mech. Syst. Signal Pr., 13(6), 855-878.   DOI
9 Peeters, B. and Ventura, C.E. (2003), "Comparative study of modal analysis techniques for bridge dynamic characteristics", Mech. Syst. Signal Pr., 17(5), 965-988.   DOI
10 Perera, R., Ruiz, A. and Manzano, C. (2007), "An evolutionary multi-objective framework for structural damage localization and quantification", Eng. Struct., 29(10), 2540-2550.   DOI
11 Rainieri, C. and Fabbrocino, G. (2014), Operational modal analysis of civil engineering structures, Springer, New York, USA.
12 Preumont, A., Voltan, M., Sangiovanni, A., Mokrani, B. and Alaluf, D. (2016), "Active tendon control of suspension bridges", Smart Struct. Syst., 18(1), 31-52.   DOI
13 Reynders, E., Pintelon, R. and De Roeck, G. (2008), "Uncertainty bounds on modal parameters obtained from stochastic subspace identification", Mech. Syst. Signal Pr., 22(4), 948-969.   DOI
14 Reynders, E. and Roeck, G.D. (2010). "A local flexibility method for vibration-based damage localization and quantification", J. Sound Vib., 329(12), 2367-2383.   DOI
15 Stubbs, N., Kim, J.T. and Farrar, C.R. (1995), "Field verification of a nondestructive damage localization and severity estimation algorithm", Proceedings-SPIE the international society for optical engineering, SPIE INTERNATIONAL SOCIETY FOR OPTICAL.
16 Talebinejad, I., Fischer, C. and Ansari, F. (2011), "Numerical evaluation of vibration-based methods for damage assessment of cable-stayed bridges", Comput.-Aided Civil Infrastruct. Eng., 26(3), 239-251.   DOI
17 Shih, H.W., Thambiratnam, D.P. and Chan, T.H. (2009), "Vibration based structural damage detection in flexural members using multi-criteria approach", J, Sound Vib., 323(3-5), 645-661.   DOI
18 Shih, H.W., Thambiratnam, D.P. and Chan, T.H. (2011), "Damage detection in truss bridges using vibration based multi-criteria approach", Struct. Eng. Mech., 39(2), 187.   DOI
19 Toksoy, T. and Aktan, A.E. (1994), "Bridge-condition assessment by modal flexibility", Exp. Mech., 34(3), 271-278.   DOI
20 Talebinejad, I., Sedarat, H., Emami-Naeini, A., Krimotat, A. and Lynch, J. (2014), "Implementation of damage detection algorithms for the Alfred Zampa memorial suspension bridge", Proc. SPIE, 9063, 906312.
21 Wu, L. and Casciati, F. (2014), "Local positioning systems versus structural monitoring: a review", Struct. Control Health Monit., 21(9), 1209-1221.   DOI
22 Turmo, J. and Luco, J.E. (2010), "Effect of hanger flexibility on dynamic response of suspension bridges", J. Eng. Mech., 136(12), 1444-1459.   DOI
23 Van Overschee, P. and De Moor, B.L. (2012), Subspace identification for linear systems: Theory-Implementation-Applications, Springer Science & Business Media.
24 Vanniamparambil, P.A., Khan, F., Hazeli, K., Cuadra, J., Schwartz, E., Kontsos, A. et al. (2013), "Novel optico-acoustic nondestructive testing for wire break detection in cables", Struct. Control Health Monit., 20(11), 1339-1350.   DOI
25 Wang, H., Tao, T., Li, A. and Zhang, Y. (2016), "Structural health monitoring system for Sutong cable-stayed bridge", Smart Struct. Syst., 18(2), 317-334.   DOI
26 Wu, W.H., Wang, S.W., Chen, C.C. and Lai, G. (2016), "Mode identifiability of a cable-stayed bridge under different excitation conditions assessed with an improved algorithm based on stochastic subspace identification", Smart Struct. Syst., 17(3), 363-389.   DOI
27 Wahab, M.A. and De Roeck, G. (1999), "Damage detection in bridges using modal curvatures: application to a real damage scenario", J. Sound Vib., 226(2), 217-235.   DOI
28 Wang, F.L., Chan, T.H.T., Thambiratnam, D.P. and Tan, A.C.C. (2013), "Damage diagnosis for complex steel truss bridges using multi-layer genetic algorithm", J. Civil Struct. Health Monit., 3(2), 117-127.   DOI
29 Wickramasinghe, W.R., Thambiratnam, D.P., Chan, T.H. and Nguyen, T. (2016), "Vibration characteristics and damage detection in a suspension bridge", J. Sound Vib., 375, 254-274.   DOI
30 Xu, F. and Wang, X. (2012), "Inspection method of cable-stayed bridge using magnetic flux leakage detection: principle, sensor design, and signal processing", J. Mech. Sci. Technol., 26(3), 661-669.   DOI
31 Zejli, H., Gaillet, L., Laksimi, A. and Benmedakhene, S. (2012), "Detection of the presence of broken wires in cables by acoustic emission inspection", J. Bridge Eng., 17(6), 921-927.   DOI
32 Cantieni, R. (2005), "Experimental methods used in system identification of civil engineering structures", Proceedings of the 1st int operational modal analysis conference (IOMAC).
33 Achkire, Y. and Preumont, A. (1998), "Optical measurement of cable and string vibration", Shock Vib., 5(3), 171-179.   DOI
34 An, Y., Spencer, B.F. and Ou, J. (2015), "A test method for damage diagnosis of suspension bridge suspender cables", Comput.-Aided Civil Infrastruct. Eng., 30(10), 771-784.   DOI
35 Bouaanani, N. (2006), "Numerical investigation of the modal sensitivity of suspended cables with localized damage", J. Sound Vib., 292(3), 1015-1030.   DOI
36 Casciati, F., Casciati, S. and Faravelli, L. (2017), "A contribution to the modelling of human induced excitation on pedestrian bridges", Struct. Saf., 66, 51-61.   DOI
37 Chen, Z.W., Zhu, S., Xu, Y.L., Li, Q. and Cai, Q.L. (2014), "Damage detection in long suspension bridges using stress influence lines", J. Bridge Eng., 20(3), 05014013.   DOI
38 Catbas, F.N., Brown, D.L. and Aktan, A.E. (2006), "Use of modal flexibility for damage detection and condition assessment: case studies and demonstrations on large structures", J. Struct. Eng., 132(11), 1699-1712.   DOI
39 Catbas, F.N., Gul, M. and Burkett, J.L. (2008), "Conceptual damage-sensitive features for structural health monitoring: laboratory and field demonstrations", Mech. Syst. Signal Pr., 22(7), 1650-1669.   DOI
40 Cho, K.H., Kim, H.M., Jin, Y.H., Liu, F., Moon, H., Koo, J.C. et al. (2013), "Inspection robot for hanger cable of suspension bridge: mechanism design and analysis", IEEE/ASME T. Mechatron., 18(6), 1665-1674.   DOI
41 Ding, Y., Li, A., Du, D. and Liu, T. (2010), "Multi-scale damage analysis for a steel box girder of a long-span cable-stayed bridge", Struct. Infrastruct. Eng., 6(6), 725-739.   DOI
42 Goi, Y. and Kim, C.W. (2016), "Mode identifiability of a multispan cable-stayed bridge utilizing stabilization diagram and singular values", Smart Struct. Syst., 17(3), 391-411.   DOI
43 Hunt, D.L. (1992), "Application of an enhanced coordinate modal assurance criterion", Proceedings of the 10th International modal analysis conference.
44 Huth, O., Feltrin, G., Maeck, J., Kilic, N. and Motavalli, M. (2005), "Damage identification using modal data: Experiences on a prestressed concrete bridge", J. Struct. Eng., 131(12), 1898-1910.   DOI
45 Ko, J.M., Ni, Y.Q., Zhou, H.F., Wang, J.Y. and Zhou, X.T. (2009), "Investigation concerning structural health monitoring of an instrumented cable-stayed bridge", Struct. Infrastruct. Eng., 5(6), 497-513.   DOI
46 Huang, M.H., Thambiratnam, D.P. and Perera, N.J. (2005), "Vibration characteristics of shallow suspension bridge with pre-tensioned cables", Eng. Struct., 27(8), 1220-1233.   DOI
47 Kim, J.T. (2013), "Field application of elasto-magnetic stress sensors for monitoring of cable tension force in cable-stayed bridges", Smart Struct. Syst., 12(12), 465-482.   DOI
48 Cho, S., Jo, H., Jang, S., Park, J., Jung, H. J., Yun, C. B. and Seo, J. W. (2010), "Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: data analyses", Smart Struct. Syst., 6(5-6), 461-480.   DOI
49 Kim, S.W. and Kim, N.S. (2013), "Dynamic characteristics of suspension bridge hanger cables using digital image processing", NDT & E Int., 59, 25-33.   DOI
50 Koo, K.Y., Lee, J.J. and Yun, C.B. (2008), "Damage detection of bridge structures using modal flexibility under temperature variation", IFAC Proceedings, 41(2), 15762-15767.   DOI
51 Ko, J.M., Sun, Z.G. and Ni, Y.Q. (2002), "Multi-stage identification scheme for detecting damage in cable-stayed Kap Shui Mun Bridge", Eng. Struct., 24(7), 857-868.   DOI
52 Li, H., Yang, H. and Hu, S.L.J. (2006), "Modal strain energy decomposition method for damage localization in 3D frame structures", J. Eng. Mech., 132(9), 941-951.   DOI
53 Lepidi, M., Gattulli, V. and Vestroni, F. (2009), "Damage identification in elastic suspended cables through frequency measurement", J. Vib. Control, 15(6), 867-896.   DOI
54 Jaishi, B., Kim, H.J., Kim, M.K., Ren, W.X. and Lee, S.H. (2007), "Finite element model updating of concrete-filled steel tubular arch bridge under operational condition using modal flexibility", Mech. Syst. Signal Pr., 21(6), 2406-2426.   DOI
55 Lonetti, P. and Pascuzzo, A. (2014), "Vulnerability and failure analysis of hybrid cable-stayed suspension bridges subjected to damage mechanisms", Eng. Fail. Anal., 45(8), 470-495.   DOI
56 Lin, S.W., Yi, T.H., Li, H.N. and Ren, L. (2017), "Damage detection in the cable structures of a bridge using the virtual distortion method", J. Bridge Eng., 22(8), 04017039.   DOI