• 제목/요약/키워드: modal control

검색결과 461건 처리시간 0.023초

독립모달공간 제어기법에서 작동기 수의 절감에 대한 연구

  • 황재혁;김준수;박명호
    • 소음진동
    • /
    • 제7권2호
    • /
    • pp.273-279
    • /
    • 1997
  • Reduction of number of actuators for independent modal space control In this paper, a new modified independent modal space control (IMSC), which relaxes the fundamental hardware limitation of IMSC, is suggested to handle the vibration and attitude control problem for flexible large structures. This method has adapted a new switching algorithm between controlled modes and a novel design technique for modal control force. The main advantage of this method is to minimize the discontinuity of the modal control forces and to assure the asymptotic stability of the closed-loop systems. This process is shown to be simple and efficient in a realistic example of vibration control of a cantiloever beam. It has been found that the modified IMSC suggested in this paper, which can reduce the number of actuators, is highly excellent compared to other previous methods in terms of the performance and stability of the vibration control systems.

  • PDF

독립모달공간 제어기법에서 작동기 수의 절감에 대한 연구 (Reduction of Number of Actuators for Independent Modal Space Control)

  • 황재혁;김준수;박명호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.166-174
    • /
    • 1996
  • In this paper, a new modified independent modal space control(IMSC), which relaxes the fundamental hardware limitation of IMSC, is suggested to handle the vibration and attitude control problem for flexible large structures. This method has adapted a new switching algorithm between controlled modes and a novel design technique for modal control force. The main advantage of this method is to minimize the discontinuity of the modal control forces and to assure the asymptotic stability of the closed-loop systems. This process is shown to be simple and efficient in a realistic example of vibration control of a cantilever beam. It has been found that the modified IMSC suggested in this paper, which can reduce the number of actuators, is highly excellent compared to other previous methods in terms of the performance and stability of the vibration control systems.

  • PDF

Multi-Modal Controller Usability for Smart TV Control

  • Yu, Jeongil;Kim, Seongmin;Choe, Jaeho;Jung, Eui S.
    • 대한인간공학회지
    • /
    • 제32권6호
    • /
    • pp.517-528
    • /
    • 2013
  • Objective: The objective of this study was to suggest a multi-modal controller type for Smart TV Control. Background: Recently, many issues regarding the Smart TV are arising due to the rising complexity of features in a Smart TV. One of the specific issues involves what type of controller must be utilized in order to perform regulated tasks. This study examines the ongoing trend of the controller. Method: The selected participants had experiences with the Smart TV and were 20 to 30 years of age. A pre-survey determined the first independent variable of five tasks(Live TV, Record, Share, Web, App Store). The second independent variable was the type of controllers(Conventional, Mouse, Voice-Based Remote Controllers). The dependent variables were preference, task completion time, and error rate. The experiment consist a series of three experiments. The first experiment utilized a uni-modal Controller for tasks; the second experiment utilized a dual-modal Controller, while the third experiment utilized a triple-modal Controller. Results: The first experiment revealed that the uni-modal Controller (Conventional, Voice Controller) showed the best results for the Live TV task. The second experiment revealed that the dual-modal Controller(Conventional-Voice, Conventional-Mouse combinations) showed the best results for the Share, Web, App Store tasks. The third experiment revealed that the triple-modal Controller among all the level had not effective compared with dual-modal Controller. Conclusion: In order to control simple tasks in a smart TV, our results showed that a uni-modal Controller was more effective than a dual-modal controller. However, the control of complex tasks was better suited to the dual-modal Controller. User preference for a controller differs according the Smart TV functions. For instance, there was a high user preference for the uni-Controller for simple functions while high user preference appeared for Dual-Controllers when the task was complex. Additionally, in accordance with task characteristics, there was a high user preference for the Voice Controller for channel and volume adjustment. Furthermore, there was a high user preference for the Conventional Controller for menu selection. In situations where the user had to input text, the Voice Controller had the highest preference among users while the Mouse Type, Voice Controller had the highest user preference for performing a search or selecting items on the menu. Application: The results of this study may be utilized in the design of a controller which can effectively carry out the various tasks of the Smart TV.

Vibration control of a time-varying modal-parameter footbridge: study of semi-active implementable strategies

  • Soria, Jose M.;Diaz, Ivan M.;Garcia-Palacios, Jaime H.
    • Smart Structures and Systems
    • /
    • 제20권5호
    • /
    • pp.525-537
    • /
    • 2017
  • This paper explores different vibration control strategies for the cancellation of human-induced vibration on a structure with time-varying modal parameters. The main motivation of this study is a lively urban stress-ribbon footbridge (Pedro $G\acute{o}mez$ Bosque, Valladolid, Spain) that, after a whole-year monitoring, several natural frequencies within the band of interest (normal paring frequency range) have been tracked. The most perceptible vibration mode of the structure at approximately 1.8 Hz changes up to 20%. In order to find a solution for this real case, this paper takes the annual modal parameter estimates (approx. 14000 estimations) of this mode and designs three control strategies: a) a tuned mass damper (TMD) tuned to the most-repeated modal properties of the aforementioned mode, b) two semi-active TMD strategies, one with an on-off control law for the TMD damping, and other with frequency and damping tuned by updating the damper force. All strategies have been carefully compared considering two structure models: a) only the aforementioned mode and b) all the other tracked modes. The results have been compared considering human-induced vibrations and have helped the authors on making a decision of the most advisable strategy to be practically implemented.

가제어성 및 외란 가억제성 척도를 고려하는 출력되먹임 고유구조 지정 (Output feedback left eigenstructure assignment considering controllability and disturbance suppressibility measures)

  • 최재원;이장규;김유단;강태삼
    • 제어로봇시스템학회논문지
    • /
    • 제1권2호
    • /
    • pp.71-77
    • /
    • 1995
  • The control effectiveness and disturbance suppressibility are mainly governed by a left eigenstructure of a system. In this paper, a control algorithm which uses an output feedback eigenstructure assignment scheme is proposed in order that a desired closed-loop system has the specified degree of controllability and/or degree of disturbance suppressibility. To do this, a modal and a gross disturbance suppressibility measures are proposed. A modified version of Hamdan and Nayfeh's modal controllability measure is also presented. The validity and usefulness of the proposed measures and the controller design algorithm are illustrated by designing a controller for a third-order system as an example.

  • PDF

다층 압전 필름의 전극 패턴 최적화를 통한 2차원 구조물에서의 모달 변환기 구현 (Design of Modal Transducer in 2D Structure Using Multi-Layered PVDF Films Based on Electrode Pattern Optimization)

  • 유정규;김지철;김승조
    • 소음진동
    • /
    • 제8권4호
    • /
    • pp.632-642
    • /
    • 1998
  • A method based on finite element discretization is developed for optimizing the polarization profile of PVDF film to create the modal transducer for specific modes. Using this concept, one can design the modal transducer in two-dimensional structure having arbitrary geometry and boundary conditions. As a practical means for implementing this polarization profile without repoling the PVDF film the polarization profile is approximated by optimizing electrode patterns, lamination angles, and poling directions of the multi-layered PVDF transducer. This corresponds to the approximation of a continuous function using discrete values. The electrode pattern of each PVDF layer is optimized by deciding the electrode of each finite element to be used or not. Genetic algorithm, suitable for discrete problems, is used as an optimization scheme. For the optimization of each layers lamination angle, the continuous lamination angle is encoded into discrete value using binary 5 bit string. For the experimental demonstration, a modal sensor for first and second modes of cantilevered composite plate is designed using two layers of PVDF films. The actuator is designed based on the criterion of minimizing the system energy in the control modes under a given initial condition. Experimental results show that the signals from residual modes are successfully reduced using the optimized multi-layered PVDF sensor. Using discrete LQG control law, the modal peaks of first and second modes are reduced in the amount of 12 dB and 4 dB, resepctively.

  • PDF

압전감지기/작동기를 이용한 복합적층판의 다중모드 진동제어 (Multi-Modal Vibration Control of Laminated Composite Plates Using Piezoceramic Sensors/Actuators)

  • 김문현;강영규;박현철;황운봉;한경섭
    • 대한기계학회논문집A
    • /
    • 제20권10호
    • /
    • pp.3173-3185
    • /
    • 1996
  • Multi-model vibration control of laminated composites plates for various fiver orientations has been carried out by making use of piezolectric materials(PZT) as sensors and actuators. Cantilever plate is used as a specimen to test multi-modal vibration supression under random exitation. Impulse technique is applied to determine the natural frequency, the damping ratio(.zeta.) and the modal damping(2.zeta..omega.) of the first bending and the trosion modes. Two independent controllers are implemented to control the two modes simultaneously and established digitally on the basis of the direct negative velocity feedback control with collocated sensor/actuator. Experimental results for various fiber orientations and feedback gains are compared with finite element analysis considering stiffnesses and dampings of piezoeletiric sensors, actuators and bonding layer.

Modal-based mixed vibration control for uncertain piezoelectric flexible structures

  • Xu, Yalan;Qian, Yu;Chen, Jianjun;Song, Gangbing
    • Structural Engineering and Mechanics
    • /
    • 제55권1호
    • /
    • pp.229-244
    • /
    • 2015
  • H-infinity norm relates to the maximum in the frequency response function and H-infinity control method focuses on the case that the vibration is excited at the fundamental frequency, while 2-norm relates to the output energy of systems with the input of pulses or white noises and 2-norm control method weighs the overall vibration performance of systems. The trade-off between the performance in frequency-domain and that in time-domain may be achieved by integrating two indices in the mixed vibration control method. Based on the linear fractional state space representation in the modal space for a piezoelectric flexible structure with uncertain modal parameters and un-modeled residual high-frequency modes, a mixed dynamic output feedback control design method is proposed to suppress the structural vibration. Using the linear matrix inequality (LMI) technique, the initial populations are generated by the designing of robust control laws with different H-infinity performance indices before the robust 2-norm performance index of the closed-loop system is included in the fitness function of optimization. A flexible beam structure with a piezoelectric sensor and a piezoelectric actuator are used as the subject for numerical studies. Compared with the velocity feedback control method, the numerical simulation results show the effectiveness of the proposed method.

Active control of a flexible structure with time delay

  • Cai, Guo-Ping;Yang, Simon X.
    • Structural Engineering and Mechanics
    • /
    • 제20권2호
    • /
    • pp.191-207
    • /
    • 2005
  • Time delay exists inevitably in active control, which may not only degrade the system performance but also render instability to the dynamic system. In this paper, a novel active controller is developed to solve the time delay problem in flexible structures. By using the independent modal space control method, the differential equation of the controlled mode with time delay is obtained from the time-delay system dynamics. Then it is discretized and changed into a first-order difference equation without any explicit time delay by augmenting the state variables. The modal controller is derived based on the augmented system using the discrete variable structure control method. The switching surface is determined by minimizing a discrete quadratic performance index. The modal coordinate is extracted from sensor measurements and the actuator control force is converted from the modal one. Since the time delay is explicitly included throughout the entire controller design without any approximation, the system performance and stability are guaranteed. Numerical simulations show that the proposed controller is feasible and effective in active vibration control of dynamic systems with time delay. If the time delay is not explicitly included in the controller design, instability may occur.

Non-spillover control design of tall buildings in modal space

  • Fang, J.Q.;Li, Q.S.;Liu, D.K.
    • Wind and Structures
    • /
    • 제2권3호
    • /
    • pp.189-200
    • /
    • 1999
  • In this paper, a new algorithm for active control design of structures is proposed and investigated. The algorithm preserves the decoupling property of the modal vibration equation and eliminates the spillover problem, which is the main shortcoming in the independent modal space control(IMSC) algorithm. With linear quadratic regulator(LQR) control law, the analytical solution of algebraic Riccati equation and the optimal actuator control force are obtained, and the control design procedure is significantly simplified. A numerical example for the control design of a tall building subjected to wind loads demonstrates the effectiveness of the proposed algorithm in reducing the acceleration and displacement responses of tall buildings under wind actions.