Browse > Article
http://dx.doi.org/10.12989/sss.2017.20.5.525

Vibration control of a time-varying modal-parameter footbridge: study of semi-active implementable strategies  

Soria, Jose M. (Department of Continuous Medium Mechanics and Theory of Structures, ETS Ingenieros de Caminos, Universidad Politecnica de Madrid)
Diaz, Ivan M. (Department of Continuous Medium Mechanics and Theory of Structures, ETS Ingenieros de Caminos, Universidad Politecnica de Madrid)
Garcia-Palacios, Jaime H. (Department of Continuous Medium Mechanics and Theory of Structures, ETS Ingenieros de Caminos, Universidad Politecnica de Madrid)
Publication Information
Smart Structures and Systems / v.20, no.5, 2017 , pp. 525-537 More about this Journal
Abstract
This paper explores different vibration control strategies for the cancellation of human-induced vibration on a structure with time-varying modal parameters. The main motivation of this study is a lively urban stress-ribbon footbridge (Pedro $G\acute{o}mez$ Bosque, Valladolid, Spain) that, after a whole-year monitoring, several natural frequencies within the band of interest (normal paring frequency range) have been tracked. The most perceptible vibration mode of the structure at approximately 1.8 Hz changes up to 20%. In order to find a solution for this real case, this paper takes the annual modal parameter estimates (approx. 14000 estimations) of this mode and designs three control strategies: a) a tuned mass damper (TMD) tuned to the most-repeated modal properties of the aforementioned mode, b) two semi-active TMD strategies, one with an on-off control law for the TMD damping, and other with frequency and damping tuned by updating the damper force. All strategies have been carefully compared considering two structure models: a) only the aforementioned mode and b) all the other tracked modes. The results have been compared considering human-induced vibrations and have helped the authors on making a decision of the most advisable strategy to be practically implemented.
Keywords
semi-active vibration control; dynamic behavior; time-varying modal-parameters; human-induced vibration; footbridge;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Askari, M., Li, J. and Samali, B. (2016), "Semi-active control of smart building-MR damper systems using novel TSK-Inv and max-min algorithms", Smart Struct. Syst., 18(5), 1005-1028. doi:10.12989/sss.2016.18.5.1005.   DOI
2 Bortoluzzi, D., Casciati, S., Elia, L. and Faravelli, L. (2015), "Design of a TMD solution to mitigate wind-induced local vibrations in an existing timber footbridge", Smart Struct. Syst., 16(3), 459-478. doi:10.12989/sss.2015.16.3.459.   DOI
3 Brownjohn, J.M.W., Pavic, A. and Omenzetter, P. (2004), "A spectral density approach for modeling continuous vertical forces on pedestrian structures due to walking", Can. J. Civil Eng
4 Caetano, E., Cunha, A. Moutinho, C. and Magalhaes, F. (2010), "Studies for controlling human-induced vibration of the Pedro EInes footbridge, Portugal. Part 2: Implementation of tuned mass dampers", Eng. Struct., 32(4), 1082-1091. doi:10.1016/j.engstruct.2009.12.033.   DOI
5 Casado, C.M., Diaz, I.M., Sebastian, J., Poncela, A.V. and Lorenzana, A. (2013), "Implementation of passive and active vibration control on an in-service footbridge", Struct. Control Health Monit., 20, 70-87. doi:10.1002/stc.   DOI
6 Casciati, F. and Casciati, S. (2016), "Designing the control law on reduced-order models of large structural systems", Struct. Control Health Monit., 23(4), 707-718. doi:10.1002/stc.1805.   DOI
7 Casciati, F., Magonette, and Marazzi, F. (2006), Technology of Semiactive Devices and Applications in Vibration Mitigation. John Wiley & Sons Inc.
8 Chung, L.L., Lai, Y.A. and Yang, C.S.W. (2013), "Semi-active tuned mass dampers with phase control", J. Sound Vib., 332(15), 1-16. doi:10.1016/j.jsv.2013.02.008.   DOI
9 Castano, J., Cosido, O., Pereda, J., Cacho-Perez, M. and Lorenzana, A. (2015), "Static, modal and dynamic behaviour of a strees ribbon footbridge: experimental and computational results", Proceedings of the 3rd International Conference on Mechanical Models in Structural Engineering (CMMoST 2015).
10 Chang, C.M., Wang, Z., Spencer Jr., B.F. and Chen, Z (2013), "Semi-active damped outriggers for seismic protection of high-rise buildings", Smart Struct. Syst., 11(5), 435-451. doi:10.12989/sss.2013.11.5.435.   DOI
11 Den Hartog, J.P. (1985), Mechanical Vibrations. Courier Co.
12 Gunaydin, M., Adanur, S., Altunisik, A.C. and Sevim, B. (2015), "Static and dynamic responses of halgavor footbridge using steel and FRP materials", Steel Compos. Struct., 18(1), 51-69. doi:10.12989/scs.2015.18.1.051.   DOI
13 Jung, H.J.J., Spencer Jr., B.F., Ni, Y.Q., Lee, I.W. (2004), "State-of-the-art of semiactive control systems using MR fluid dampers in civil engineering applications", Struct. Eng. Mech., 17(3-4), 493-526. doi:10.12989/sem.2004.17.3_4.493.   DOI
14 Koo, J.H., Ahmadian, M. Setareh, M. and Murray, T. (2004), "In search of suitable control methods for semi-active tuned vibration absorbers", J. Vib. Control, 10(2), 163-174. doi:10.1177/1077546304032020.   DOI
15 Moutinho, C. (2015), "Testing a simple control law to reduce broadband frequency harmonic vibrations using semi-active tuned mass dampers", Smart Mater. Struct., 24(5). IOP Publishing: 55007. doi:10.1088/0964-1726/24/5/055007.   DOI
16 Narros, A J. (2011), "Pasarela Peatonal "Pedro Gomez Bosque" Sobre El Rio Pisuerga En La Ciudad de Valladolid. Un Nuevo Record de Longitud En Pasarelas Colgadas de Banda Tesa", Revista Tecnica Cemento-Hormigon, 947, 80-86 (in spanish).
17 Moutinho, C., Cunha, A. and Caetano, E. (2010), "Analysis and control of vibrations in a stress-ribbon footbridge", Struct. Control Health Monit., doi:10.1002/stc.
18 Moutinho, C., Magalhaes, F. and Caetano, E. (2015), "Analysis of the vibration levels of a slender footbridge measured by continuous dynamic monitoring system", In COMPDYN 2015. Crete Island, Greece.
19 Nagarajaiah, S. and Jung, H.J. (2014), "Smart tuned mass dampers: Recent developments", Smart Struct. Syst., 13 (2), 173176.
20 Peeters, Bart, and Guido De Roeck. (1999), "Reference-based stochastic subspace identification for output-only modal analysis", Mech. Syst. Signal Pr., 13(6), 855-878. doi:10.1006/mssp.1999.1249.   DOI
21 Pereira, E., Diaz, I.M., Hudson, E.J. and Reynolds, P. (2014),. "Optimal control-based methodology for active vibration control of pedestrian structures", Eng. Struct., 80, 153-162. doi:10.1016/j.engstruct.2014.08.046.   DOI
22 Sebastian, J.de, Escudero, A., Arnaz, R., Diaz, I.M., Poncela, A. and Lorenzana, A. (2013), "A low-cost vibration monitoring system for a stress-ribbon footbridge", Proceedings of the 6th ECCOMAS Conference on Smart Structures and Materials.
23 Soria, J.M,, Diaz, I.M., Garcia-Palacios, J.H. and Iban, N. (2016), "Vibration monitoring of a steel-plated stress-ribbon footbridge: uncertainties in the modal estimation", J. Bridge Eng., 21(8), 1-13. doi:10.1061/(ASCE)BE.1943-5592.0000830.   DOI
24 Standard, I.S.O. (2007), "ISO 10137: Bases for Design of structure-Serviceability of Buildings and Walkways against Vibrations", Geneva: ISO.
25 Weber, F., Feltrin, G. and Huth, O. (2006), "Guidelines for structural control", SAMCO Final Report. Dubendorf, Switzerland.
26 Wang, X., Diaz, I.M. and Pereira, E. (2016), "MIMO control design including input-output frequency weghting for humaniInduced vibrations", Proceedings of the EACS 2016 -- 6th European Conference on Structural Control. Sheffield, U.K.
27 Weber, F. (2013), "Dynamic characteristics of controlled MR-STMDs of wolgograd bridge", Smart Mater. Struct., 22(9):95008. doi:10.1088/0964-1726/22/9/095008.   DOI