• Title/Summary/Keyword: mobile robot control

Search Result 1,465, Processing Time 0.025 seconds

Development of Network based Remote Surveillance System Using Omni-Directional Mobile Robot (전방향 이동로봇을 이용한 네트워크기반 원격 감시시스템 구현)

  • Seo, Yong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.91-97
    • /
    • 2010
  • This paper describes a development of an network based remote surveillance system using omni-directional mobile robot. the proposed surveillance system can control a mobile robot to move and examines the given place closely while the conventional surveillance system uses a fixed camera. The mobile robot in the proposed system has three omni-directional wheels to move to any given direction freely. We also developed the proposed system as robot services using Microsoft's MSRDS for a user to control the mobile robot and monitor the remote scene captured from the robot. Finally we verified the feasibility and effectiveness of the proposed system by conducting the remote operating the mobile robot and monitoring experiments in a networked environment. We also conducted a color based object detection and motion detection on image sequences acquired from a remote mobile robot in an another PC in a network environment.

Development of Experimental Mobile Robots for Robotics Engineering Education by Using LEGO MINDSTORM (이동로봇을 중심으로 LEGO MINDSTORM을 응용한 로봇공학 교육용 실습 로봇개발)

  • Park, June-Hyung;Jung, Seul
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.57-64
    • /
    • 2012
  • This paper introduces several mobile robots developed by using LEGO MIDSTORM for experimental studies of robotics engineering education. The first mobile robot is the line tracer robot that tracks a line, which is a prototype of wheel-driven mobile robots. Ultra violet sensors are used to detect and follow the line. The second robot system is a two-wheel balancing robot that is somewhat nonlinear and complex. For the robot to balance, a gyro sensor is used to detect a balancing angle and PD control is used. The last robot system is a combined system of a line tracer and a two-wheel balancing robot. Sensor filtering and control algorithms are tested through experimental studies.

Localization for Mobile Robot Navigation using Color Patches Installed on the Ceiling (천정 부착 칼라 패치 배열을 이용한 이동로봇의 자기위치 인식)

  • Wang, Shi;Chen, Hong-Xin;Strzelecki, Michal;Kim, Hyong-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.156-160
    • /
    • 2008
  • A localization system to estimate the position as well as movement direction of mobile robots is proposed in this paper. This system implements a camera fixed on a robot and color patches evenly distributed and mounted on the planar ceiling. Different permutations of patch colors code information about robot localization. Thus, extraction of color information from patch images leads to estimation of robot position. Additionally, simple geometric indicators are combined with patch colors to estimate robot's movement direction. Since only the distribution of patch colors has to be known, the analysis of patch images to is relatively fast and simple. The proposed robot localization system has been successfully tested for navigation of sample mobile robot. Obtained test results indicate the robustness and reliability of proposed technique for robot navigation.

Target Detection of Mobile Robot by Vision (시각 정보에 의한 이동 로봇의 대상 인식)

  • 변정민;김종수;김성주;전홍태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.29-32
    • /
    • 2002
  • This paper suggest target detection algorithm for mobile robot control using color and shape recognition. In many cases, ultrasonic sensor(USS) is used in mobile robot system to measure the distance between obstacles. But with only USS, it may have many restrictions. So we attached CCD camera to mobile robot to overcome its restrictions. If visual information is given to robot system then robot system will be able to accomplish more complex mission successfully. With acquired vision data, robot looks for target by color and recognize its shape.

  • PDF

Control of a mobile robot using a self-tuning controller (적응 제어기를 이용한 자율 운반체 제어)

  • 이기성;신동호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.20-25
    • /
    • 1993
  • The control of the motion of a mobile robot is studied. The driving and steering motor assembly is located in the front of the mobile robot. The position of the mobile robot is determined by the steering angle and driving distance. For the controller design, a time-series multivariate model of the autogressive exogenous (ARX) type is used to describe the input-output relation. The discounted least square method is used to estimate parameters of the time-series model. A self-tuning controller is so designed that the position of the center of the mobile robot track the given trajectory. Simulation result controlled by a self-tuning controller is presented to illustrate the approach.

  • PDF

A control system for wheel-driven mobile robot (휠구동방식의 이동로봇을 위한 제어시스템 설계)

  • 고경철;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.19-24
    • /
    • 1992
  • Real-time mobile robot controllers usually have been designed with an emphasis on control theory ignoring the importance of system integration. This paper demonstrates that useful mobile robots require a real time controller with a wide range of capabilities in addition to control theory. These capabilities include: path-planning, position estimation, path tracking control and wheel control. An architectural framework supporting these capabilities has been designed and implemented. Using this frame work, individual modules such as a path planner, a path tracking controller, position estimators, wheel controllers and other cruical elements have been successfully integrated into the control system for the LCAR robot which was developed as a proto-type mobile robot in our laboratory. The context of the research, the architecture, its implementation and performance results from experiments are discussed.

  • PDF

Experimental Studies of Vision Based Position Tracking Control of Mobile Robot Using Neural Network (신경회로망을 이용한 비전 기반 이동 로봇의 위치제어에 대한 실험적 연구)

  • Jung, Seul;Jang, Pyung-Soo;Won, Moon-Chul;Hong, Sub
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.515-526
    • /
    • 2003
  • Tutorial contents of kinematics and dynamics of a wheeled drive mobile robot are presented. Based on the dynamic model, simulation studies of position tracking of a mobile robot are performed. The control structure of several position control algorithms using visual feedback are proposed and their performances are compared. In order to compensate for uncertainties from unknown dynamics and ignored dynamic effects such as slip conditions, neural network based position control schemes are proposed. Experiments are conducted and the results show the performance of the vision based neural network control scheme fumed out to be the best among several proposed schemes.

Fuzzy Logic Application to a Two-wheel Mobile Robot for Balancing Control Performance

  • Kim, Hyun-Wook;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.154-161
    • /
    • 2012
  • This article presents experimental studies of fuzzy logic application to control a two-wheel mobile robot(TWMR) system. The TWMR system is composed of two systems, an inverted pendulum system and a mobile robot system. Although linear controllers can stabilize the TWMR, fuzzy controllers are expected to have robustness to uncertainties so that the resulting performances are expected to be better. Nominal fuzzy rules are used to control balance and position of TWMR. Fuzzy logic is embedded on a DSP chip to control the TWMR. Balancing performances of the PID controller and the fuzzy controller under disturbances are compared through extensive experimental studies.

Path Tracking Control for a Wheeled Mobile Robot using Fuzzy Algorithm (퍼지 알고리즘을 이용한 차륜형 이동로봇의 경로추종제어)

  • 하윤수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.731-737
    • /
    • 1999
  • This paper describes the path tracking control for a mobile robot which has two casters at the front and rear to keep balance and two driving wheels on the left and right sides of its body. Power wheeled steering method is adapted to control heading of the robot. It is very difficult to find appropriate feedback gains when linear regulator control scheme is adapted to path tracking con-trol of this type of robot. Therefore in this paper we propose the path tracking control algorithm using the fuzzy logic control scheme for this type of root. Simulation to prove the validity of the proposed two algorithms is performed. The results are reported as last part in this paper.

  • PDF

Intelligent navigation and control system for a mobile robot based on different programming paradigms

  • Kubik, Tomasz;Loukianov, Andrey A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.36.6-36
    • /
    • 2001
  • The problem of robot navigation and control is a complex task. Its complexity and characteristics depends on the characteristics of the environment robot inhabits, robot construction (mechanical abilities to move, sense) and the job the robot is supposed to do. In this paper we propose a hybrid programming approach to mobile robot navigation and control in an indoor environment. In our approach we used declarative, procedural, and object oriented programming paradigms and we utilized some advantages of our distributed computing architecture. The programming languages corresponding to the paradigms we used were C, C++ and Prolog. In the paper we present some details of our mobile robot hardware and software structure, focusing on the software design and implementation.

  • PDF