• Title/Summary/Keyword: mobile IoT device

Search Result 119, Processing Time 0.028 seconds

A Meta-Model for Development Process of IoT Application by Using UML

  • Cho, Eun-Sook;Song, Chee-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.121-128
    • /
    • 2019
  • An Internet of Things(IoT) technology which provides intelligent services by combining context-awareness based intelligences, inter-communication is made of between things and things or between things and person through the network connected with intelligent things is spreading rapidly. Especially as this technology is converged into smart device, mobile, cloud, big data technologies, it is applied into various domains. Therefore, this is different from existing Web or Mobile Application. New types of IoT applications are emerging by adapting IoT into Web or mobile. Because IoT application is not only focused on software but also considering hardware or things aspect, there are limitations existing development process. Existing development processes don't consider analysis and design techniques considering both hardware and things. We propose not only a meta-model for development process which can support IoT application's development but also meta-models for main activities in this paper. Especially we define modeling elements by using UML's extension mechanisms, provide development process, and suggest design techniques how to apply those elements into IoT application's modeling phase. Because there are many types of IoT application's type, we propose an Android and Arduino-based on IoT application as a case study. We expect that proposed technique can be applied into many of various IoT application development and design with a form of flexible and extensible as well as main functionalities or elements are more concretely described. As a result, it brings IoT application's flexibility and the effect of quality improvement.

Cloud security authentication platform design to prevent user authority theft and abnormal operation during remote control of smart home Internet of Things (IoT) devices (스마트 홈 사물인터넷 기기(IoT)의 원격제어 시 사용자 권한 탈취 및 이상조작 방지를 위한 클라우드 보안인증 플랫폼 설계)

  • Yoo Young Hwan
    • Convergence Security Journal
    • /
    • v.22 no.4
    • /
    • pp.99-107
    • /
    • 2022
  • The use of smart home appliances and Internet of Things (IoT) devices is growing, enabling new interactions and automation in the home. This technology relies heavily on mobile services which leaves it vulnerable to the increasing threat of hacking, identity theft, information leakage, serious infringement of personal privacy, abnormal access, and erroneous operation. Confirming or proving such security breaches have occurred is also currently insufficient. Furthermore, due to the restricted nature of IoT devices, such as their specifications and operating environments, it is difficult to provide the same level of internet security as personal computers. Therefore, to increase the security on smart home IoT devices, attention is needed on (1) preventing hacking and user authority theft; (2) disabling abnormal manipulation; and (3) strengthening audit records for device operation. In response to this, we present a plan to build a cloud security authentication platform which features security authentication management functionality between mobile terminals and IoT devices.

A Minimum Energy Consuming Mobile Device Relay Scheme for Reliable QoS Support

  • Chung, Jong-Moon;Kim, Chang Hyun;Lee, Daeyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.618-633
    • /
    • 2014
  • Relay technology is becoming more important for mobile communications and wireless internet of things (IoT) networking because of the extended access network coverage range and reliable quality of service (QoS) it can provide at low power consumption levels. Existing mobile multihop relay (MMR) technology uses fixed-point stationary relay stations (RSs) and a divided time-frame (or frequency-band) to support the relay operation. This approach has limitations when a local fixed-point stationary RS does not exist. In addition, since the time-frame (or frequency-band) channel resources are pre-divided for the relay operation, there is no way to achieve high channel utilization using intelligent opportunistic techniques. In this paper, a different approach is considered, where the use of mobile/IoT devices as RSs is considered. In applications that use mobile/IoT devices as relay systems, due to the very limited battery energy of a mobile/IoT device and unequal channel conditions to and from the RS, both minimum energy consumption and QoS support must be considered simultaneously in the selection and configuration of RSs. Therefore, in this paper, a mobile RS is selected and configured with the objective of minimizing power consumption while satisfying end-to-end data rate and bit error rate (BER) requirements. For the RS, both downlink (DL) to the destination system (DS) (i.e., IoT device or user equipment (UE)) and uplink (UL) to the base station (BS) need to be adaptively configured (using adaptive modulation and power control) to minimize power consumption while satisfying the end-to-end QoS constraints. This paper proposes a minimum transmission power consuming RS selection and configuration (MPRSC) scheme, where the RS uses cognitive radio (CR) sub-channels when communicating with the DS, and therefore the scheme is named MPRSC-CR. The proposed MPRSC-CR scheme is activated when a DS moves out of the BS's QoS supportive coverage range. In this case, data transmissions between the RS and BS use the assigned primary channel that the DS had been using, and data transmissions between the RS and DS use CR sub-channels. The simulation results demonstrate that the proposed MPRSC-CR scheme extends the coverage range of the BS and minimizes the power consumption of the RS through optimal selection and configuration of a RS.

Small size IoT Device Monitoring System Modeling applying DEVS methodology

  • Lee, Se-Han;Seo, Hee-Suk;Choi, Yo-Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.2
    • /
    • pp.45-51
    • /
    • 2018
  • In this paper, we propose a Designed and Developed home router management system. Through the fourth industrial revolution and development of IoT technology, now people can experience a wide range of IoT related services at their workplace or daily lives. At the industrial site, IoT devices are used to improve productivity such as factory automation, and at home, IoT technology is used to control home appliances from a remote distance. Usually IoT device is integrated and controlled by the router. Home router connects different IoT devices together at home, however when security issues arise, it can invade personal privacy. Even though these threats exist, the perception for home router security is still insufficient. In this paper, we have designed and developed home router management system using DEVS methodology to promote the safe use of home router. Through the DEVS methodology, we have designed the system and developed the mobile application. This management system enables users to set up security options for home router easily.

IoT Device Management Standard Protocol Trends in Mobile Communications (이동통신 기반 IoT 장치관리 표준 프로토콜 동향)

  • Oh, S.H.;Ko, S.K.;Son, S.C.;Lee, B.T.;Kim, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.30 no.1
    • /
    • pp.94-101
    • /
    • 2015
  • 이동통신 기반 IoT(Internet of Things) 관련 표준들은 3GPP와 ETSI를 중심으로 제정되어 왔으나 2012년부터 표준의 중복을 회피하고 단일화된 표준을 통해서 IoT 시장을 성장시키고자 oneM2M이라는 국제적 협의체가 구성되었으며, 최근 Release 1 표준을 발표하는 등 IoT 표준을 사실상 주도하고 있다. Mason과 Machina 리서치에 따르면 2020년에는 동시 연결된 M2M(Machine to Machine)/IoT 장치들의 수가 21억개에 달할 것이고, 이것들이 동시에 200억개의 통신 연결을 생성할 것이다. 이런 수많은 장치들을 관리하기 위한 표준으로 OMA(Open Mobile Alliance)에서는 LWM2M(Lightweight M2M)를 제정하였다. 또한 이런 장치들은 센서들과 같이 연산능력과 배터리에 제약이 많아서 이것을 극복할 수 있는 메시지 프로토콜로 IETF에서는 CoAP 표준을 제정하였다. oneM2M에서도 CoAP과 LWM2M 표준을 채택하였고, 이를 기반으로 한 단말과 응용서비스 관리 기능이 확대될 것으로 기대된다. 본고에서는 이동통신 기반 IoT 표준 동향과 LWM2M 기반 단말 관리 규격에 대해 살펴본다.

  • PDF

Adaptive Success Rate-based Sensor Relocation for IoT Applications

  • Kim, Moonseong;Lee, Woochan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3120-3137
    • /
    • 2021
  • Small-sized IoT wireless sensing devices can be deployed with small aircraft such as drones, and the deployment of mobile IoT devices can be relocated to suit data collection with efficient relocation algorithms. However, the terrain may not be able to predict its shape. Mobile IoT devices suitable for these terrains are hopping devices that can move with jumps. So far, most hopping sensor relocation studies have made the unrealistic assumption that all hopping devices know the overall state of the entire network and each device's current state. Recent work has proposed the most realistic distributed network environment-based relocation algorithms that do not require sharing all information simultaneously. However, since the shortest path-based algorithm performs communication and movement requests with terminals, it is not suitable for an area where the distribution of obstacles is uneven. The proposed scheme applies a simple Monte Carlo method based on relay nodes selection random variables that reflect the obstacle distribution's characteristics to choose the best relay node as reinforcement learning, not specific relay nodes. Using the relay node selection random variable could significantly reduce the generation of additional messages that occur to select the shortest path. This paper's additional contribution is that the world's first distributed environment-based relocation protocol is proposed reflecting real-world physical devices' characteristics through the OMNeT++ simulator. We also reconstruct the three days-long disaster environment, and performance evaluation has been performed by applying the proposed protocol to the simulated real-world environment.

Smart Tourism Information System and IoT Data Collection Devices for Location-based Tourism and Tourist Safety Services

  • Ko, Tae-Seung;Kim, Byeong-Joo;Jwa, Jeong-Woo
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.310-316
    • /
    • 2022
  • The smart tourism service provides services such as travel planning and tour guides to tourists using key technologies of the 4th industrial revolution, such as the Internet of Things, communication infrastructure, big data, artificial intelligence, AR/VR, and drones. We are developing smart tourism services such as recommended travel products, my travel itinerary, tourism information, and chatbots for tourists through the smart tourism app. In this paper, we develop a smart tourism service system that provides real-time location-based tourism information and weather information to tourists. The smart tourism service system consists of a smart tourism app, a smart tourism information system, and an IoT data collection device. The smart tourism information system receives weather information from the IoT data collection device installed in the tourist destination. The location-based smart tourism service is provided as a smart tourism app in the smart tourism information system according to the Beacon's UUID in the IoT data collection device. The smart tourism information system stores the Beacon's UUIDs received from tourists and provides a safe hiking service for tourists.

A Study on the Leakage Current Detection System of Lighting Installation Using IoT Technology (IoT를 기반한 조명설비 누전사고 감지시스템에 관한 연구)

  • Park, Kun-Young;Kwak, Dong-Kurl;Lee, Bong-Seob;Kim, Choon-Sam;Jeon, Ho-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.7-8
    • /
    • 2018
  • In this study, we develop a leakage current detection device of lighting installation. The reed switch using in proposed device is activated when the leakage current is generated. We also design a GUI system of a management computer using LabVIEW and administrator's mobile phone app based on IoT. As results, this study is to build an IoT convergence system and it aims to protect people and property by coping with leakage current fault in real time.

  • PDF

Mobile-based Big Data Processing and Monitoring Technology in IoT Environment (IoT 환경에서 모바일 기반 빅데이터 처리 및 모니터링 기술)

  • Lee, Seung-Hae;Kim, Ju-Ho;Shin, Dong-Youn;Shin, Dong-Jin;Park, Jeong-Min;Kim, Jeong-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.1-9
    • /
    • 2018
  • In the fourth industrial revolution, which has become an issue now, we have been able to receive instant analysis results faster than the existing slow speed through various Big Data technologies, and to conduct real-time monitoring on mobile and web. First, various irregular sensor Data is generated using IoT device, Raspberry Pi. Sensor Data is collected in real time, and the collected data is distributed and stored using several nodes. Then, the stored Sensor Data is processed and refined. Visualize and output the analysis result after analysis. By using these methods, we can train the human resources required for Big Data and mobile related fields using IoT, and process data efficiently and quickly. We also provide information that can confirm the reliability of research results through real time monitoring.

Overview on Smart Sensor Technology for Biometrics in IoT Era (사물인터넷 시대의 생체인식 스마트 센서 기술과 연구 동향)

  • Kim, Kwang-Seok;Kim, Dae Up
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.29-35
    • /
    • 2016
  • With the pace of rapid innovation in technology of IoT (Internet of Things) and smart devices, biometric technology becomes one of the most progressive industries. Recent trends in biometrics show most are focused on embedding biometric sensors in mobile devices for user authentication. Multifactor biometrics such as fingerprint, retina, voice, etc. are considering as identification system to provide users with services more secured and convenient. Here we, therefore, demonstrate some major technologies and market trends of mobile biometric technology with its concerns and issues.