• 제목/요약/키워드: mixture distributions

검색결과 271건 처리시간 0.032초

스월형 GDI 엔진의 연료혼합특성 연구 (Aspects of Mixture Formation in a Swirl Type GDI Engine)

  • 김기성;박상규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권2호
    • /
    • pp.260-271
    • /
    • 2003
  • For the Purpose of understanding the mixing phenomena of a GDI(Gasoline Direct Injection) engine, the spray behaviors and fuel distributions were investigated in a single cylinder transparent GDI engine. The experimental engine is a swirl type GDI engine with a SCV(Swirl Control Valve). PLIF(Planar Laser Induced Fluorescence) system with KrF Excimer laser was used for the measurement of the fuel distributions. The effects of SCV opening angles and the injector specifications on the fuel distribution characteristics were investigated. As a result, it was found that the SCV opening angle had a great effect on the fuel distributions in the late stage of compression process by changing the flow fields in the combustion chamber.

A new class of life distributions based on unknown age

  • El-Di, M.M. Mohie;Abu-Youss, S.E.;Al, Nahed S.A.
    • International Journal of Reliability and Applications
    • /
    • 제16권1호
    • /
    • pp.27-34
    • /
    • 2015
  • Based on increasing concave ordering a new class of life distribution is introduced. The new class of life distribution is named used better than aged in increasing concave ordering and is denoted by UBAC(2). The implication of our proposed class of life distribution with other classes is given. The properties of UBAC(2) under convolution, discrete mixture and formation of a coherent system are studied. Finally a characterization of the proposed class of life distributions by Laplace transform is discussed.

흡기관내 와류생성기가 압축착화엔진의 수분 농도 분포 및 연소성능 향상에 미치는 영향 (Effect of Vortex Generator in Intake Pipe on the Moisture Concentration Distributions and Combustion Performance in a CI Engine)

  • 정석훈;서현규
    • 한국분무공학회지
    • /
    • 제23권4호
    • /
    • pp.169-174
    • /
    • 2018
  • In this work, optimization of blade shape for the improvement of mixture formation and vortex of intake port was performed by numerically, and the combustion performance of CI engine with optimized blade shape was investigated. To achieve this, 3 types of blade shape were studied under the different air flow mass conditions and the numerical results were investigated in terms of humidification water, moisture concentration, and velocity distributions. Evaporated liquid mass was also compared under various test conditions to reveal the turbulent intensity in an intake port. It was observed that the optimized blade shape can improve the humidification water, moisture concentration, and velocity distributions of intake port inside. The evaporated liquid mass was also increased under the conditions with blade. Especially, low NOx emissions was observed with optimized blade condition.

A Review on Nonparametric Density Estimation Using Wavelet Methods

  • Sungho;Hwa Rak
    • Communications for Statistical Applications and Methods
    • /
    • 제7권1호
    • /
    • pp.129-140
    • /
    • 2000
  • Wavelets constitute a new orthogonal system which has direct application in density estimation. We introduce a brief wavelet density estimation and summarize some asymptotic results. An application to mixture normal distributions is implemented with S-Plus.

  • PDF

수소 함유량에 따른 합성가스(H2/CO)-공기 예혼합 화염의 배출특성 연구 (A Study on the Emission Characteristics of Syngas(H2/CO)-Air Premixed Flame according to the H2 contents)

  • 정병규;최종민;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.9-10
    • /
    • 2013
  • This study reports the results of an experimental investigation of emission and temperatures from the syngas-air premixed flame with a various mixture composition in the region of large equivalence ratios. The effects of hydrogen contents and equivalence ratios on the flame velocity, which reported before, and emission of syngas fuel are examined. In this study, representative syngas mixture compositions ($H_2:CO$) such as $H_2:CO=10:90$, 25:75, 50:50 and 75:25 and equivalence ratios from 0.5 to 5.0 have been conducted. The emissions of syngas fuel were measured by the high precision analyzer with enclosure configuration and the adiabatic temperatures are calculated by used Chemkin basis. The NOx emission level is coincided relatively well with the adiabatic temperature distributions in lean mixture conditions, but for rich mixture conditions NOx level was also increased again even though the adiabatic temperature decreases. Such an increasing characteristics in rich mixture conditions is coincided well with the tendency that rather the flue gas temperature increases.

  • PDF

Mixture of Cumulants Approximaton 법에 의한 발전 시물레이션에 관한 연구 (A Study on the Probabilistic Production Cost Simulation by the Mixture of Cumulants Approximation)

  • 송길영;김용하
    • 대한전기학회논문지
    • /
    • 제40권1호
    • /
    • pp.1-9
    • /
    • 1991
  • This paper describes a new method of calculating expected energy generation and loss of load probability (L.O.L.P) for electric power system operation and expansion planning. The method represents an equivalent load duration curve (E.L.D.C) as a mixture of cumulants approximation (M.O.N.A). By regarding a load distribution as many normal distributions-rather than one normal distribution-and representing each of them in terms of Gram-Charlier expansion, we could improve the accuracy of results. We developed an algorithm which automatically determines the number of distribution and demarcation points. In modeling of a supply system, we made subsets of generators according to the number of generator outage: since the calculation of each subset's moment needs to be processed rapidly, we further developed specific recursive formulae. The method is applied to the test systems and the results are compared with those of cumulant, M.O.N.A. and Booth-Baleriaux method. It is verified that the M.O.C.A. method is faster and more accure than any other method.

  • PDF

성층급기 연소현상에 관한 수치적 연구 (A Numerical Study on Stratified Charge Formation and Combustion Processes)

  • 이석영;허강열
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.86-96
    • /
    • 2007
  • A direct-injection stratified-charge(DISC) engine has been considered as a promising alternative in spite of high unburned hydrocarbon emission levels during light load operation. In this paper investigation is made to characterize formation and combustion processes of stratified mixture charge in a simple constant volume combustion chamber. Both experimental and numerical analyses are performed for fluid and combustion characteristics with 3 different induction types for rich, homogeneous and lean mixture conditions. The commercial code FIRE is applied to the turbulent combustion process in terms of measured and calculated pressure traces and calculated distributions of mean temperature, OH radical and reaction rate. It turns out that the highest combustion rate occurs for the rich state condition at the spark ignition location due to existence of stoichiometric mixture and timing.

NUMERICAL ANALYSIS OF FUEL INJECTION IN INTAKE MANIFOLD AND INTAKE PROCESS OF A MPI NATURAL GAS ENGINE

  • XU B. Y.;LIANG F. Y.;CAI S. L.;QI Y. L.
    • International Journal of Automotive Technology
    • /
    • 제6권6호
    • /
    • pp.579-584
    • /
    • 2005
  • Unsteady state free natural gas jets injected from several types of injectors were numerically simulated. Simulations showed good agreements with the schlieren experimental results. Moreover, injections of natural gas in intake manifolds of a single-valve engine and a double-valve engine were predicted as well. Predictions revealed that large volumetric injections of natural gas in intake manifolds led to strong impingement of natural gas with the intake valves, which as a result, gave rise to pronounced backward reflection of natural gas towards the inlets of intake manifolds, together with significant increase in pressure in intake manifold. Based on our simulations, we speculated that for engines with short intake manifolds, reflections of the mixture of natural gas and air were likely to approach the inlets of intake manifolds and subsequently be inbreathed into other cylinders, resulting in non-uniform mixture distributions between the cylinders. For engines with long intake manifolds, inasmuch as the degrees of intake interferences between the cylinders were not identical in light of the ignition sequences, non-uniform intake charge distributions between the cylinders would occur.

이중 K-평균 군집화 (Double K-Means Clustering)

  • 허명회
    • 응용통계연구
    • /
    • 제13권2호
    • /
    • pp.343-352
    • /
    • 2000
  • K-평균 군집화(K-means clustering)는 비계층적 군집화 방법이 하나로서 큰 자료에서 개체 군집화에 효율적인 것으로 알려져 있다. 그러나 종종 비교적 균일한 대군집의 일부를 소군집에 떼어주는 오류를 범하기도 한다. 이 연구에서는 그러한 현상을 정확히 인지하고 이에 대한 대책으로서 ‘이중 K-평균 군집화(double K-means clustering)’방법을 제시한다. 또한 실증적 사례에 새 방법론을 적용해보고 토의한다.

  • PDF

분자동역학을 이용한 열원 주변에서의 나노입자의 분포에 대한 연구 (A Study of Nano-particle Distributions near a Heated Substrate using Molecular Dynamics Simulations)

  • 이태일
    • 한국기계가공학회지
    • /
    • 제18권5호
    • /
    • pp.60-65
    • /
    • 2019
  • Since nanofluids (NFs), which are a mixture of a small amount of nanoparticles and a bulk liquid solvent, were first proposed by Stephen Choi at the Argonne National Lab in 1995, they have been considered for use in many technical studies of power cooling systems and their practical application due to their high thermal conductivity and heat transfer coefficients compared to conventional coolants. Although nanofluids are a well-known form of engineering fluid that show great promise for use in future cooling systems, their underlying physics as demonstrated in experiments remain unclear. One proven method of determining the heat transfer performance of nanofluids is measuring the concentration of nanoparticles in a mixture. However, it is experimentally inefficient to build testbeds to systematically observe particle distributions on a nanoscale. In this paper, we demonstrate the distribution of nanoparticles under a temperature gradient in a solution using molecular dynamics simulations. First, temperature profiles based on substrate temperature are introduced. Following this, the radial pair distribution functions of pairs of nanoparticles, solvents, and substrates are calculated. Finally, the distribution of nanoparticles in different heating regions is determined.