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A Review on Nonparametric Density Estimation
Using Wavelet Methods?

Sungho Lee? and Hwa Rak Leed

Abstract

Wavelets constitute a new orthogonal system which has direct application in
density estimation. We introduce a brief wavelet density estimation and summarize
some asymptotic results. An application to mixture normal distributions is
implemented with S-Plus.

1. Introduction

The subject of nonparametric probability density estimation has generated a vast area of
research and challenging problems. In addition to the traditional histogram method there are
methods based on kemels(Parzen(1962), Rosenblatt(1956)), on Fourier series(Kronmal and
Tarter(1968)), on Fourler transforms(Davis(1977)), on orthogonal polynomials (Schwartz(1967)),
on splines(Wahba(1975)) and on general delta sequences (Foldes and Revez(1974)). The
performances of all these procedures depend strongly on the choice of a smoothing parameter
or bandwidth. This choice is in fact by no means an easy task. Different approaches have
been considered, generally corresponding to some optimal solution of some well-posed problem.
As an example, if the regularity class of the estimated function is assumed to be known, then
it is possible to choose the bandwidth so that the estimate attains the minimax rate. Of
course, from a practical point of view, this is not entirely satisfactory since it requires some
extra knowledge. Various attempts have also been investigated to reduce this knowledge.
Among these, the recent appearance of explicit orthonormal bases based on multiresolution
analysis has given different opportunities to solve the problem. Indeed, unlike traditional
Fourier bases, wavelet bases, since they have localization properties in space as well as in
frequency, enable expansions of a function into coefficients which are reliable indicators of its
regularity.

Wavelet methods have been introduced to statistics by Donoho(1992), Donoho and
Johnstone(1992, 1994a, b) and Kerkvacharan and Picard(1992, 1993). These authors have
demonstrated the virtues of wavelet methods from the viewpoint of adaptive smoothing,
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typically in the context of the achievability of very good convergence rates uniformly over
exceptionally large function classes. The first use of wavelet bases for density estimation
appears in papers by Doukan and Leon(1990), Kerkyacharian and Picard(1992) and
Walter(1992).

2. Multiresolution analysis and Besov space
2.1 Multiresolution analysis and wavelets

Let us recall(ef. Meyer(1990)) that one can construct a function ¢ such that :

(1) The sequence {@(x—k), k=Z )} is an orthonormal family of L*(R). Let us call V, the
subspace spanned by this sequence.

(2) Vjez V,CV,, if V, denotes the subspaces spanned by {@;,, k€Z)},
9;4(x) =27 p (2'x — k).

Then we have Qz V;={0} and, furthermore, if f p=1, L*(R) =_Jg;7,

It is possible to require in addition that one of the following conditions holds :

(a) @ is of class C7, @ and all its derivatives up to the order #» are rapidly decreasing.
One says in this case that the analysis is »-regular.

(b) ¢= T(Meyer's wavelet).

(c) ¢ is of class C” compactly supported(e.g.Daubechies’s wavelet; see Daubechies (1988)).

Under these conditions, let us define the space W, by the following :

Vier = Vj@ W

There exists a function ¢(the "wavelet”) such that

- {¢(x—%), k=Z} is an orthonormal basis of W,

¢ has the same regularity properties as ¢(.e. (a), (b) or (c)),

- the family {¢;,, #=Z, 72} is an orthonormal basis of L*(R),where ¢, (x)=
277 ¢ (2 x — k).

The following decomposition is also true :

LAR)=Vy @ Wy D Wy, D -~

That is, V/€LX(R), f= 2 a;u®us + 24 20 Biid

where @), = [F(x) 0,4 (x)dx, B = [ F(x) Ga(x)dr, j2h,
2.2 Besov spaces

These spaces rather usual in analysis(cf. Bergh and Lostrom(1976)) appear to be easily
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characterizable in terms of multiresolution analysis.

Definition. For 0{s<1, 1<p,g< -+, set

o ”Thf“f”p 7_dh \1/q
Fana() = ([ (2 ke

Yop +wl(f) = hﬁ%% , where 1,f(x) = f(x —h),

In the case s=1, set

trf=2f, . e o
Yl.p.a(f)=(fR( (k734 z-|hh| I”) la;ﬁ )1/’ N el F) = hsgj;? |zs f Tlhh[f f“p.

For O(SS]. and ISP,Qﬁ"I'OO, set Bs,p,q={fELpl7’s,p,q< +OO}
This space is equipped with the norm | flls,, = £, + 7. 5.(F).
For s>1, s writes n+e with neN and(0<e<land feB,,,< f™eB,,, Vm<n

where ™ denotes the m-derivative of #. This space 1s equipped with the norm,

1Al + 2 Yo F™) = 1Al 0

Examples. Sobolev space H; = B,5:, B, « is the set of bounded, Holderian functions of

order s, B) w « is the Zyvgmund's class.

These spaces may be also characterized in the following way(cf. Meyer(1992)).

Theorem 2.1. If conditions (1) and (a) hold for ¢, with #>s, then
fEBs,ﬁ.q iad ]s,p,q(f) = ”Eof” LXR) + ( gb(”D;f” Lﬁ(R)zjs)q) l/q< co

(with the usual modification for g=+ =),

Remarks. (1) The norm [, , is equivalent to || 5, -

(2) This characterization doesn’t depend on the functions ¢ provided that ¢ is »-regular
with »>s.

)] Using s E0f=§a/0,k Lo,k Djfzglgj,k ¢j,k , and “ﬂj“ i (;lﬁj,klp)llﬁ,
the norm e (F) = llag. |l » + [2(2“””2‘””)115,-, Il »)?1" is again equivalent to

Js5o(f). This is exactly reducing Besov spaces to sequences spaces.
(4) B¢y CBgy, for s§>s, ors=s and ¢ <g,

B » 1 1
Bs-p-qCBsﬁq fOI' Z))p, I3 =S_E—‘7’

By CHyCB e -
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3. A Review on some main results

In this section we review and discuss some main results. From now on, let us take a
function ¢ verifying (1) and (¢) (in 2.1) and let s>0, 1<p,g<+oo. We define the class F

depending on s, p, ¢ and a linear estimator Fras follows:

Fopa=1{f £20, [F=1, Ju(DSM), £ = 2 Gin.i 0iom. o).

~ 1
where @k = 2‘1 Pion, K X).

Theorem 3.1. (Kerkyacharian and Picard(1992))

(1) Let 0, l=p{+ o, I=g<+w and s<{», where #» is the regularity of MRA. If d is
taken to be either dy,, 0<s<s, ¢=q or dip 0<5<s, § integer, then for p=2, 3C
constant such that

VfEFS'p_q, Efd(f, f)<Cn (s—$)p/(1+29) (1)

where 2/7 =042 g (f, @)=, F~2)"  dy (£2)=IF— g™}

(2) Let R,= i’}f fézl? E,;d(7, f). Then for M large enough, for 1=p{oo, there exists a
s

constant C, such that R,>C,n ¢ ~$/0+29,

Remarks. (1) Theorem3.1 indicates that for p=2, E, /' —fll5< cn ~¥1F%),
(2) For 1<p<2, equation(l) is still true if JaeR, ® symmetric function of L”?>(R) not
increasing on RY such that f(x—a) <w(x), VxR

(3) 277 plays the role of the usual window #(n).

The estimator in Theorem3.1 is linear. If the density has spatially varying properties, the
linear estimators can be under—performing. When the density belongs to By, and errors are
measured with L, norm(1<x{co, x >p), non-linearity of the estimator becomes essential

since the linear estimators are sub-optimal. Hence the unknown density needs to be
approximated with some details. That is,

F= 2 et J_Z;D 2, B b
Doncho et al.(1996) suggested a thresholded estimator obtained by truncating the wavelet
series and then thresholding the smallest empirical coefficients. They suggested thresholded

wavelet coefficients B, using hard or soft threshold techniques. Given a wavelet coefficient

By and a threshold £ 0 the hard threshold value is given by  Thwa( Bie) = Balll Bal>t}
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and the soft threshold value is given by Tiu( Bu:) = sign( Ba)( By —t)I{] Balz=t}

,Where [ is the usual indicator function, '&,-ukz—’l;; zi:.lgzv,-ok(X,-) and ,/.77;,;=—71Z Z.l i (X)),

From simulation experience, one expects that soft thresholding will better suppress noise
artifacts, while hard thresholding will better preserve the visual appearance of peaks and
jumps.  Donoho et al.(1996) also indicated that the same form, based on simple thresholding
of the wavelet coefficients, achieves nearly optimal performance in terms of rate of
convergence over a variety of global error measure and over a variety of function spaces.
They defined :

%jlzt = :Bjkfu Ejk | )KC(j)n_UZ } and ?= EZ a’jok ¢j,,1e + JZ}D kgzﬁ; ¢jkt-

Theorem 3.2. (Donoho,Johnstone, Kerkyacharian, and Picard(1996))
Let s—1/p>0 and p/A\1=p<oo, If C(j)=Vj there exist constants C;= Cs(s, p,q, M)

and K, = Ky(s, p,p"; M) such that if

Jo(n) [(p"—p)p) {20} y1—2e
2 ) )

9 )2(n(logn _
2% ~ (5 /logn)

and K= K,, then

Cs(logn) VP ay=e e>0,

o (1/2-plap)+ ;10 R e _
falf*:;fz:r) (EANF=FI5) <y Cs(logn) ( n )%, €=0,
Cs (102 e, e <0,

where x;=max(x,0), Fu,(T)={f:feF 4, supp(f)C[—T, T1}

o s s—1/p+1/p e D =D
o= min(Tygs Tidsap b STYT g 0§

1,1
p+p"

—s/(1+29)

Remarks. (1) When p=p’, optional rate is #» and linear estimators attain the

optional rate.

(2) When p<p, we have s =s—1/p+1/p'<{s and the convergence rate of linear

—S1A+2) o slower than n ~ Y4+,

estimators #

Kerkyacharian et al.(1996) considered the global level j in stead of thresholding each
coefficient. This different point of view has advantages as well as drawback. But a practical
aspect of this method seems to be that one does a good job for a reasonable amount of data.

) N il p2 .
Let ?71'H =7{ ’@]_ 22’/71”2 }, 771,5 = _@%__ I{ @fzzj/nplz },
i
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where &; is defined as follows: For a even integer »
@;(p) = (Z) c™ (il'__Z’Z:‘)Esp 24 Gin(Xa) -+ (X))

where S, is the set of p-dimensional vector of {I,...,n}" such that all the coordinates are
different. For p=ap,+(1—a)p,, where a<(0,1) and p;,p, are even integers,

8= (8 (1) (; (b))

Theorem 3.3. (Kerkyacharian, Picard and Tribouley (1996)).

Let p=2, Let 7= ; a]‘nk Pik T szjn ,7\71' ; Eiok b iy

. . o~ . ~ H ~ 5
where 7,=0, 71=logs(n) and 7; is either 7 or 7.

Then, for s<(1/p, r+1), g=[1, +1, there exists a constant C such that
sup o s
feFu(B) Bl Ths=Fll3<C n

Remark. The above Theorem 3.3 can be understood as follows: if for s known,

sup » —spl(1429) ~ i e 11425
fEFSD(](B) Ef[l ?]D,]l .?-L || b Cn » }-L g a]nk@]nk_!_ JZ]B; g]kﬂb;k, 2 71 )

Unlike the above works, Hall and Patil (1995) discuss the performance of wavelet—based
density estimators for a fixed density, rather than for a very large number of candidates for
the density. The estimators that they employ are different from those suggested by Donoho et
al. (1996) and other papers. Suppose f admit the wavelet expansion(cf. Meyer(1992))

f= —o§<mbj¢j+ 2:0 —og;<mbij¢"j

L 1
where ¢j(x)=p2¢(px—j), ¢, (x)=p2¢(p,x—7), log,p=Ilog, p(n) is the most coarse

resolution level of the fitted wavelet, p;=2'p, b= f fe;, and b= f f¢ ;. Unbiased estimators
of b; and by are given by b=n"" mi;:lqo,-(Xm) and by=n"" "Zlgbz-j(Xm). A nonlinear
wavelet estimator of f has the form

Fa) =T b0+ BXb, 11 by18)¢u(x)

where &>0 is a threshold and ¢>1 is an integer that is typically chosen so that »2¢ is close to =.
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Theorem3.4. (Hall and Patil(1995))
Assume that £ exists in a piecewise sense and is bounded and piecewise continuous on
(—o0,c0) with finite and well-defined left-and right-hand limits, and monotone on (—eo, —u)

and on (u,) for sufficiently large = Assume that p—oo, g—oo, (2;19,-)82—*0,

(Z;pi)lﬂr@z—*m and 6> C(n 'logn)'?, where C>2{r(supf)/(1+27) }'2 Then if
(5 pytss e
[EG-pt~ntp4cp™ (@)
Where "™ means that the ratio of the left and right hand side converges to 1 as »n —co,

Remarks. (1) p plays the role of the inverse of bandwidth.

1/1+2r

(2) Equation (2) is asymptotically minimized by taking p-~ const. n and the minimum

size of (2) is  const.n TN
(3) Unlike the analogous situation for kernel density estimators, the faillure of the
smoothness condition at a finite number of points does not affect Theorem 3.4 (see Theorem

2.2 in Hall and Patil{1995)).

Standard wavelet-based density estimators may not retain non-negativity.

Pinheiro and Vidakovic (1997) estimated the square root of the density. But they did not
formulate any asymptotic results in their paper. Penev and Dechevsky(1997) presented another
estimator of the square root of the density, which enables us to control the positiveness and
retain asymptotic minimax optimality result.

4. Simulation

In this section we show the performarice of linear wavelet estimators using normal nmixture
densities. Notice that in applying wavelets an important choice is the wavelet famly. Here
Daubechies #9 wavelet function was used with S as an example and the program is
appended for the reader convenience(S' wavelet can't be directly used for probability density
function estimation). Figure 1 shows the linear wavelet estimator with Daub#9 for a sample of
500 observations simulated from 0.3N(-1,1)+0.7N(2,1)(For more simulation results and §
program, see Lee(1999)).
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Raubechies(8). n=500,|=0

% S| -9
o_ T T T T T T . T T [ T T
-4 2 0 2 4 & -4 2 Ja] 2 4
x r4
(a) f(x)=0.3*N(-1,1)+0.7«N(2,1) (b) wavelet linear estimator
<figure 1>

<S" program>

daub.f<-function(n,m==8)
{
h<-n.select(n)
phi<-c(1,rep(0length(h)-1))
x<-0:(length(h)-1)
for(j in 1'm) {
y<-seq(0,by=2"(-j),Jength=length(phi)*2)
phi.1<-rep(0,length(y))
for(i in l:length(phi)) {
if(i<=n-1) {
for( in 1) {
phi.1[2+i-1]1<-phi.1[2*i-1]+sqrt(2)*h[2*]-1]*phi[i-1+1]
phi. 1[2#1]<-phi.1[2*i]+sqrt(2)*h[2+]]*phi[i-1+1]

¥
else {
for(l in 1:(ength(h)/2)) {
phi.1[2#i-1]<-phi.1[2*i-1]+sqrt(2)*h[2#]1-1]*phili-1+1]
phi. 1[2*1]1<-phi.1[2*i]+sqrt(2)*h[2*1]#phili-1+1]
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}

phi<-rep(0,length(y))

x<-rep(0,length(y))

phi<-phi.l

X<y
}
y<-seq((1-n),by=2"(-m) Jength=length(phi))
shi<-rep(0,length(y))
for (i in I:length(shi)) {

for(l in 1:length(h)) {

if(x[1]<=2*y[i]+]-2 && 2+y[il+1-2<=x[length(x)])
shi[il<-shi[il+sqrt(2)*(-1)"1+h[1]*phi[x==2*y[i] +]-2]

}
daub<-data.frame(x,phi,y,shi)

dens.f<-function(data,number=2j=2)
{
daub<-daub.f(number)
low < —floor(min(data))
hi<-ceiling (max(data))
z<—-seq(low,hi,2"(-8))
low<-low#*2"j
hi<-hi*2"j
c<-rep(0,(hi-low+1))
k<-1
for (1 in low:hi) {
for (i in lilength(data)) {
if(daub$x[11<=2"j*datali]-1 && 2"j*datalil-1<=daub$x [length(daub$x)])
clk]<-c[k]+2~(/2) *daub$phi[2 j*datalil-1-2"(-9)<daub$x &
daub$x <2 j*datali]-1+2"(-9))/ length(data)
}
k<-k+1
}
f<-rep(0,length(z))
for (i in l:dength(z)) {
k<-1
for (1 in low:hi) {
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if(daub$x[11<=2"*z[i]-1 && 2"j*z[i]~1<=daub$x[length(daub$x)])
flil<~fli]+c[k}*2~(/2)*daub$phil 27 *z[i]-1-27(-9)<daub%$x &
daub$x<2"j*z[i]-1+2~(-9)]
k<-k+1

}
plot(z f type="1")
mtext(side=3line=0.1 paste("Daubechies(” number,”), n="length(data),”, j="i))
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