• Title/Summary/Keyword: mixture distributions

Search Result 272, Processing Time 0.032 seconds

Tree Size Distribution Modelling: Moving from Complexity to Finite Mixture

  • Ogana, Friday Nwabueze;Chukwu, Onyekachi;Ajayi, Samuel
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.1
    • /
    • pp.7-16
    • /
    • 2020
  • Tree size distribution modelling is an integral part of forest management. Most distribution yield systems rely on some flexible probability models. In this study, a simple finite mixture of two components two-parameter Weibull distribution was compared with complex four-parameter distributions in terms of their fitness to predict tree size distribution of teak (Tectona grandis Linn f) plantations. Also, a system of equation was developed using Seemingly Unrelated Regression wherein the size distributions of the stand were predicted. Generalized beta, Johnson's SB, Logit-Logistic and generalized Weibull distributions were the four-parameter distributions considered. The Kolmogorov-Smirnov test and negative log-likelihood value were used to assess the distributions. The results show that the simple finite mixture outperformed the four-parameter distributions especially in stands that are bimodal and heavily skewed. Twelve models were developed in the system of equation-one for predicting mean diameter, seven for predicting percentiles and four for predicting the parameters of the finite mixture distribution. Predictions from the system of equation are reasonable and compare well with observed distributions of the stand. This simplified mixture would allow for wider application in distribution modelling and can also be integrated as component model in stand density management diagram.

A Mixture of Multivariate Distributions with Pareto in Reliability Models

  • El-Gohary Awad
    • International Journal of Reliability and Applications
    • /
    • v.7 no.1
    • /
    • pp.55-69
    • /
    • 2006
  • This paper presents a new class of multivariate distributions with Pareto where dependence among the components is characterized by a latent random variable. The new class includes several multivariate and bivariate models of Marshall and Olkin type. It is found the bivariate distribution with Pareto is positively quadrant dependent and its mixture. Some important structural properties of the bivariate distributions with Pareto are discussed. The distribution of minimum in a competing risk Pareto model is derived.

  • PDF

THE UNIFORM MIXTURE OF GENERALIZED ARC-SINE DISTRIBUTIONS

  • JONES M.C.
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.1
    • /
    • pp.35-38
    • /
    • 2005
  • A single, tractable, special case of the problem of continuous mixtures of beta distributions over their parameters is considered. This is the uniform mixture of generalized arc-sine distributions which, curiously, turns out to be linked by transformation to the Cauchy distribution.

A maximum likelihood estimation method for a mixture of shifted binomial distributions

  • Oh, Changhyuck
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.255-261
    • /
    • 2014
  • Many studies have estimated a mixture of binomial distributions. This paper considers an extension, a mixture of shifted binomial distributions, and the estimation of the distribution. The range of each component binomial distribution is rst evaluated and then for each possible value of shifted parameters, the EM algorithm is employed to estimate those parameters. From a set of possible value of shifted parameters and corresponding estimated parameters of the distribution, the likelihood of given data is determined. The simulation results verify the performance of the proposed method.

Application of Finite Mixture to Characterise Degraded Gmelina arborea Roxb Plantation in Omo Forest Reserve, Nigeria

  • Ogana, Friday Nwabueze
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.6
    • /
    • pp.451-456
    • /
    • 2018
  • The use of single component distribution to describe the irregular stand structure of degraded forest often lead to bias. Such biasness can be overcome by the application of finite mixture distribution. Therefore, in this study, finite mixture distribution was used to characterise the irregular stand structure of the Gmelina arborea plantation in Omo forest reserve. Thirty plots, ten each from the three stands established in 1984, 1990 and 2005 were used. The data were pooled per stand and fitted. Four finite mixture distributions including normal mixture, lognormal mixture, gamma mixture and Weibull mixture were considered. The method of maximum likelihood was used to fit the finite mixture distributions to the data. Model assessment was based on negative loglikelihood value ($-{\Lambda}{\Lambda}$), Akaike information criterion (AIC), Bayesian information criterion (BIC) and root mean square error (RMSE). The results showed that the mixture distributions provide accurate and precise characterisation of the irregular diameter distribution of the degraded Gmelina arborea stands. The $-{\Lambda}{\Lambda}$, AIC, BIC and RMSE values ranged from -715.233 to -348.375, 703.926 to 1433.588, 718.598 to 1451.334 and 3.003 to 7.492, respectively. Their performances were relatively the same. This approach can be used to describe other irregular forest stand structures, especially the multi-species forest.

Precise Vehicle Localization Using Gaussian Mixture Map Based on Road Marking

  • Kim, Kyu-Won;Jee, Gyu-In
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.1
    • /
    • pp.23-31
    • /
    • 2020
  • It is essential to estimate the vehicle localization for an autonomous safety driving. In particular, since LIDAR provides precise scan data, many studies carried out to estimate the vehicle localization using LIDAR and pre-generated map. The road marking always exists on the road because of provides driving information. Therefore, it is often used for map information. In this paper, we propose to generate the Gaussian mixture map based on road-marking information and localization method using this map. Generally, the probability distributions map stores the single Gaussian distribution for each grid. However, single resolution probability distributions map cannot express complex shapes when grid resolution is large. In addition, when grid resolution is small, map size is bigger and process time is longer. Therefore, it is difficult to apply the road marking. On the other hand, Gaussian mixture distribution can effectively express the road marking by several probability distributions. In this paper, we generate Gaussian mixture map and perform vehicle localization using Gaussian mixture map. Localization performance is analyzed through the experimental result.

Extraction of Infrared Target based on Gaussian Mixture Model

  • Shin, Do Kyung;Moon, Young Shik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.6
    • /
    • pp.332-338
    • /
    • 2013
  • We propose a method for target detection in Infrared images. In order to effectively detect a target region from an image with noises and clutters, spatial information of the target is first considered by analyzing pixel distributions of projections in horizontal and vertical directions. These distributions are represented as Gaussian distributions, and Gaussian Mixture Model is created from these distributions in order to find thresholding points of the target region. Through analyzing the calculated Gaussian Mixture Model, the target region is detected by eliminating various backgrounds such as noises and clutters. This is performed by using a novel thresholding method which can effectively detect the target region. As experimental results, the proposed method has achieved better performance than existing methods.

  • PDF

IMAGE DENOISING BASED ON MIXTURE DISTRIBUTIONS IN WAVELET DOMAIN

  • Bae, Byoung-Suk;Lee, Jong-In;Kang, Moon-Gi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.246-249
    • /
    • 2009
  • Due to the additive white Gaussian noise (AWGN), images are often corrupted. In recent days, Bayesian estimation techniques to recover noisy images in the wavelet domain have been studied. The probability density function (PDF) of an image in wavelet domain can be described using highly-sharp head and long-tailed shapes. If a priori probability density function having the above properties would be applied well adaptively, better results could be obtained. There were some frequently proposed PDFs such as Gaussian, Laplace distributions, and so on. These functions model the wavelet coefficients satisfactorily and have its own of characteristics. In this paper, mixture distributions of Gaussian and Laplace distribution are proposed, which attempt to corporate these distributions' merits. Such mixture model will be used to remove the noise in images by adopting Maximum a Posteriori (MAP) estimation method. With respect to visual quality, numerical performance and computational complexity, the proposed technique gained better results.

  • PDF

Use of Beta-Polynomial Approximations for Variance Homogeneity Test and a Mixture of Beta Variates

  • Ha, Hyung-Tae;Kim, Chung-Ah
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.389-396
    • /
    • 2009
  • Approximations for the null distribution of a test statistic arising in multivariate analysis to test homogeneity of variances and a mixture of two beta distributions by making use of a product of beta baseline density function and a polynomial adjustment, so called beta-polynomial density approximant, are discussed. Explicit representations of density and distribution approximants of interest in each case can easily be obtained. Beta-polynomial density approximants produce good approximation over the entire range of the test statistic and also accommodate even the bimodal distribution using an artificial example of a mixture of two beta distributions.

Linear regression under log-concave and Gaussian scale mixture errors: comparative study

  • Kim, Sunyul;Seo, Byungtae
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.6
    • /
    • pp.633-645
    • /
    • 2018
  • Gaussian error distributions are a common choice in traditional regression models for the maximum likelihood (ML) method. However, this distributional assumption is often suspicious especially when the error distribution is skewed or has heavy tails. In both cases, the ML method under normality could break down or lose efficiency. In this paper, we consider the log-concave and Gaussian scale mixture distributions for error distributions. For the log-concave errors, we propose to use a smoothed maximum likelihood estimator for stable and faster computation. Based on this, we perform comparative simulation studies to see the performance of coefficient estimates under normal, Gaussian scale mixture, and log-concave errors. In addition, we also consider real data analysis using Stack loss plant data and Korean labor and income panel data.