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THE UNIFORM MIXTURE OF GENERALIZED
ARC-SINE DISTRIBUTIONS

M.C. JoNEs!

ABSTRACT

A single, tractable, special case of the problem of continuous mixtures of
beta distributions over their parameters is considered. This is the uniform
mixture of generalized arc-sine distributions which, curiously, turns out to
be linked by transformation to the Cauchy distribution.
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Let Beta(a,b) stand for the usual beta distribution on [0, 1] with parameters
a,b > 0. Mixtures of beta distributions are commonly found in the statistical
literature, but arise almost always in the form of discrete mixtures over a and/or b
or else, very occasionally, as mixtures over an additional scale parameter (Bertin
et al., 1997). Continuous mixtures over a and b are conspicuous by their absence.
This is unsurprising on tractability grounds, given the need to integrate over
functions of a and b including a beta function.

In this note, it is observed that one very special case of a continuous mixture
of beta distributions is simple and tractable. This special case is the distribution
of U where U|© = 6 ~ Beta(8,1-6),0< 8 < 1, and © ~ U(0, 1), the continuous
uniform distribution on (0,1). The Beta(f,1 — ) distribution is also known as
the generalized arc-sine distribution. Its density is
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so that the density of its uniform mixture is
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Five representative densities of the generalised arc-sine family (6 =
0.1(0.2)0.9) are plotted in Figure 1 along with density (1) (the dashed line).
(All densities tend to oo as u — 0,1, although u has to be very close to 0 or 1
for this to be apparent for 8 close to 1 or 0, respectively.) Note that the uni-
form mixture density shares the property of being U-shaped with all individual
generalized arc-sine distributions.

The uniform “averaged generalized arc-sine density” (1) can be immediately
recognised as the distribution of U = e™* /(1+€e™X) where X ~ standard Cauchy.
As such, it arises from the logistic transformation sub-case of the transformation
approach of Johnson (1949) applied to Cauchy rather than normal random vari-
ables. This, in turn, means that distribution (1) is also one of a tractable family
of distributions on [0,1] that form alternatives to the beta distribution; Johnson
and Tadikamalla (1982) provide, through similar transformation of the logistic,
another attractive family.

0<u<Ll (1)
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FIGURE 1 Five generalized arc-sine densities (solid lines) and the uniform mizture density (1)
(dashed line). To identify individual generalized arc-sine densities, note that at u = 0.4, the
densities correspond to 6 = 0.9,0.1,0.7,0.3 and 0.5 in increasing values of f(0.4).
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The uniform mixture distribution can be contrasted with the “median gen-
eralized arc-sine density”, that of Beta(1/2,1/2), the ordinary arc-sine density,
which is the symmetric member of the set of generalized arc-sine densities shown
in Figure 1 This is the distribution of V = (1/2)(1 + X/v/1 + X?), a simple con-
sequence of the relationship of Cacoullos (1965). Note that the latter has more
probability mass than the former in the interior of [0,1] and less probability mass
very close to the boundaries. This is a consequence of the relative spreads of the
respective transformations.

The author’s motivation for this study was his interest in perhaps replacing
a beta kernel estimator of a density on [0, 1], due to Chen (2000), which is of the
form o

n~t Yy K (Y (y/w) + 1,((1 - y)/w) +1)
i=1

by its natural converse

n
nTt ) K (v (Yi/w) + 1,((1 - Yi)/w) + 1).
i=1
Here, Y1, ..., Y, are the data, y is the point at which estimation takes place, w is
a smoothing parameter and K(z;a,b) is the beta density in z with parameters a
and b. The expectation of the latter is a continuous mixture of beta distributions
over a distribution for their parameters.

However, it is not clear that any continuous mixtures of beta distributions
over a and b other than the simple one discussed in this note afford such explicit
solution. This and the intriguing link between the uniform mixture of generalized
arc-sine distributions and the Cauchy distribution are what make the note stand
on its own.
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