• 제목/요약/키워드: mixed-effects model

검색결과 493건 처리시간 0.024초

Comparing Role of Two Chemotherapy Regimens, CMF and Anthracycline-Based, on Breast Cancer Survival in the Eastern Mediterranean Region and Asia by Multivariate Mixed Effects Models: a Meta-Analysis

  • Ghanbari, Saeed;Ayatollahi, Seyyed Mohammad Taghi;Zare, Najaf
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권14호
    • /
    • pp.5655-5661
    • /
    • 2015
  • Purpose: To assess the role of two adjuvant chemotherapy regimens, anthracycline-based and CMF on disease free survival and overall survival breast cancer patients by meta-analysis approach in Eastern Mediterranean and Asian countries to determine which is more effective and evaluate the appropriateness and efficiency of two different proposed statistical models. Materials and Methods: Survival curves were digitized and the survival proportions and times were extracted and modeled to appropriate covariates by two multivariate mixed effects models. Studies which reported disease free survival and overall survival curves for anthracycline-based or CMF as adjuvant chemotherapy that were published in English in the Eastern Mediterranean region and Asia were included in this systematic review. The two transformations of survival probabilities (Ln (-Ln(S)) and Ln(S/ (1-S))) as dependent variables were modeled by a multivariate mixed model to same covariates in order to have precise estimations with high power and appropriate interpretation of covariate effects. The analysis was carried out with SAS Proc MIXED and STATA software. Results: A total of 32 studies from the published literature were analysed, covering 4,092 patients who received anthracycline-based and 2,501 treated with CMF for the disease free survival and in order to analyze the overall survival, 13 studies reported the overall survival curves in which 2,050 cases were treated with anthracycline-based and 1,282 with CMF regimens. Conclusions: The findings illustrated that the model with dependent variable Ln (-Ln(S)) had more precise estimations of the covariate effects and showed significant difference between the effects of two adjuvant chemotherapy regimens. Anthracycline-based treatment gave better disease free survival and overall survival. As an IPD meta-analysis in the Italy the results of Angelo et al in 2011 also confirmed that anthracycline-based regimens were more effective for survival of breast cancer patients. The findings of Zare et al 2012 on disease free survival curves in Asia also provided similar evidence.

Toxicity Evaluation of Complex Metal Mixtures Using Reduced Metal Concentrations: Application to Iron Oxidation by Acidithiobacillus ferrooxidans

  • Cho, Kyung-Suk;Ryu, Hee-Wook;Choi, Hyung-Min
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권7호
    • /
    • pp.1298-1307
    • /
    • 2008
  • In this study, we investigated the inhibition effects of single and mixed heavy metal ions ($Zn^{2+},\;Ni^{2+},\;Cu^{2+},\;and\;Cd^{2+}$) on iron oxidation by Acidithiobacillus ferrooxidans. Effects of metals on the iron oxidation activity of A. ferrooxidans are categorized into four types of patterns according to its oxidation behavior. The results indicated that the inhibition effects of the metals on the iron oxidation activity were noncompetitive inhibitions. We proposed a reduced inhibition model, along with the reduced inhibition constant ($\alpha_i$), which was derived from the inhibition constant ($K_I$) of individual metals and represented the tolerance of a given inhibitor relative to that of a reference inhibitor. This model was used to evaluate the toxicity effect (inhibition effect) of metals on the iron oxidation activity of A. ferrooxidans. The model revealed that the iron oxidation behavior of the metals, regardless of metal systems (single, binary, ternary, or quaternary), is closely matched to that of any reference inhibitor at the same reduced inhibition concentration, $[I]_{reduced}$, which defines the ratio of the inhibitor concentration to the reduced inhibition constant. The model demonstrated that single metal systems and mixed metal systems with the same reduced inhibitor concentrations have similar toxic effects on microbial activity.

A Note on Performance of Conditional Akaike Information Criteria in Linear Mixed Models

  • Lee, Yonghee
    • Communications for Statistical Applications and Methods
    • /
    • 제22권5호
    • /
    • pp.507-518
    • /
    • 2015
  • It is not easy to select a linear mixed model since the main interest for model building could be different and the number of parameters in the model could not be clearly defined. In this paper, performance of conditional Akaike Information Criteria and its bias-corrected version are compared with marginal Bayesian and Akaike Information Criteria through a simulation study. The results from the simulation study indicate that bias-corrected conditional Akaike Information Criteria shows promising performance when candidate models exclude large models containing the true model, but bias-corrected one prefers over-parametrized models more intensively when a set of candidate models increases. Marginal Bayesian and Akaike Information Criteria also have some difficulty to select the true model when the design for random effects is nested.

A General Mixed Linear Model with Left-Censored Data

  • Ha, Il-Do
    • Communications for Statistical Applications and Methods
    • /
    • 제15권6호
    • /
    • pp.969-976
    • /
    • 2008
  • Mixed linear models have been widely used in various correlated data including multivariate survival data. In this paper we extend hierarchical-likelihood(h-likelihood) approach for mixed linear models with right censored data to that for left censored data. We also allow a general random-effect structure and propose the estimation procedure. The proposed method is illustrated using a numerical data set and is also compared with marginal likelihood method.

로지스틱 임의선형 혼합모형의 최대우도 추정법 (Maximum likelihood estimation of Logistic random effects model)

  • 김민아;경민정
    • 응용통계연구
    • /
    • 제30권6호
    • /
    • pp.957-981
    • /
    • 2017
  • 관측되지 않는 효과 또는 고정효과로 설명할 수 없는 분산 구조가 포함되어 정확한 모수 추정이 어려운 경우 체계적인 분석을 위해 일반화 선형 모형은 임의효과가 포함된 일반화 선형 혼합 모형으로 확장되었다. 본 연구에서는 일반화 선형 모형 중에서도 이분적인 반응변수를 다루는 로지스틱 회귀모형에 임의효과를 포함한 최대 우도 추정 방법을 설명한다. 그중에서도 라플라스 근사법, 가우스-에르미트 구적법, 적응 가우스-에르미트 구적법 그리고 유사가능도 우도에 대한 최대우도 추정법을 자세히 알아본다. 또한 제안한 방법을 사용하여 한국 복지 패널 데이터에서 정신건강과 생활만족도가 자원봉사활동에 미치는 영향에 대해 분석한다.

계층적 베이지안 혼합 효과 모델을 사용한 비동차 마코프 체인의 분석 (Bayesian Hierarchical Mixed Effects Analysis of Time Non-Homogeneous Markov Chains)

  • 성민제
    • 응용통계연구
    • /
    • 제27권2호
    • /
    • pp.263-275
    • /
    • 2014
  • 본 연구에서는 비동차 마코프 체인에서 개체들의 전이 행태를 분석하기 위한 계층적 베이지안 방법론을 사용하여 혼합 효과 모델을 소개 하였다. 모델의 모수들에 대한 사후분포가 분석적으로 구해질 수 없는 형태를 가지기 때문에 깁스(Gibbs) 샘플링 시뮬레이션 방법을 사용하여 조건부 사후확률로부터 샘플이 추출되었고, 실제 자료분석을 예를 사용하였다.

우울증에 대한 예측모형 (A Prediction Model for Depression Risk)

  • 김재용;민병주;이재훈;장재승;하태현;하규섭;박태성
    • 응용통계연구
    • /
    • 제27권2호
    • /
    • pp.317-330
    • /
    • 2014
  • 양극성 장애는 조증 삽화(manic episode)와 주요 우울삽화(major depressive episode)를 특징으로 하는 정신질환이다. 주요 우울삽화 시기에는 양극성 장애 환자들의 810%가 자살하는 것으로 알려져 있다. 그러므로 양극성 장애 환자를 치료할 때, 우울증상의 정도를 측정하는 것이 중요하다. 우울증상의 정도를 측정하기 위해 가장 많이 사용하는 검사법은 해밀턴 우울평가 척도(Hamilton depression rating scale)이다. 본 논문에서는 해밀턴 우울평가척도 점수를 이용하여 환자들의 치료 효과를 예측하기 위해 선형혼합효과모형(linear mixed effects model)과 전이모형(transition model)을 제시하였다. 예측을 위해 사용된 자료는 분당서울대학교병원을 방문하여 초진일 당시의 해밀턴 우울평가 척도 점수가 8 점 이상인 환자들의 정보를 사용하였다. 첫 조사시점부터 6개월, 12개월 후 세 차례에 걸쳐 관측된 해밀턴 우울평가 척도 점수를 선형혼합효과모형과 전이모형에 적합시켰다. 그 결과를 토대로 특정시점의 해밀턴 우울평가 척도 점수를 예측하였다. 첫 조사시점부터 6개월, 12개월 후의 해밀턴 우울평가 척도 점수를 사용해 선형혼합효과모형과 전이모형에 적합 시켰다. 이 모델들을 이용해 조사시점부터 24개월 후의 해밀턴 우울평가 척도 점수를 예측한다. 이 예측모델은 조사된 24개월 후의 점수와 예측된 24개월의 후의 점수를 비교하여 평가하였다.

반복측정의 분할구 자료에 대한 혼합모형 (A mixed model for repeated split-plot data)

  • 최재성
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권1호
    • /
    • pp.1-9
    • /
    • 2010
  • 본 논문은 분할구 실험에서 반복측정 요인이 처치의 한 요인으로 고려될 때, 실험자료의 분석을 위한 혼합모형과 모형내 미지모수의 추론을 위한 방법을 논의한다. 반복측정 요인으로 공간요인을 고려하고 공간요인의 수준은 분할구에 할당되나 연구자가 임의로 배정할 수 없는 실험환경이 가정된다. 이러한 실험의 특성을 갖는 자료벡터의 확률분포로 복합대칭의 공분산 구조를 갖는 다변량 정규분포를 논의하고 있다. 또한, 가정된 실험환경에 부합하는 적합한 자료의 예를 통하여 제시된 모형의 타당성과 관련모수들의 추론방법을 다루고 있다.

Bayesian modeling of random effects precision/covariance matrix in cumulative logit random effects models

  • Kim, Jiyeong;Sohn, Insuk;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • 제24권1호
    • /
    • pp.81-96
    • /
    • 2017
  • Cumulative logit random effects models are typically used to analyze longitudinal ordinal data. The random effects covariance matrix is used in the models to demonstrate both subject-specific and time variations. The covariance matrix may also be homogeneous; however, the structure of the covariance matrix is assumed to be homoscedastic and restricted because the matrix is high-dimensional and should be positive definite. To satisfy these restrictions two Cholesky decomposition methods were proposed in linear (mixed) models for the random effects precision matrix and the random effects covariance matrix, respectively: modified Cholesky and moving average Cholesky decompositions. In this paper, we use these two methods to model the random effects precision matrix and the random effects covariance matrix in cumulative logit random effects models for longitudinal ordinal data. The methods are illustrated by a lung cancer data set.