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Abstract
It is not easy to select a linear mixed model since the main interest for model building could be different and

the number of parameters in the model could not be clearly defined. In this paper, performance of conditional
Akaike Information Criteria and its bias-corrected version are compared with marginal Bayesian and Akaike
Information Criteria through a simulation study. The results from the simulation study indicate that bias-corrected
conditional Akaike Information Criteria shows promising performance when candidate models exclude large
models containing the true model, but bias-corrected one prefers over-parametrized models more intensively
when a set of candidate models increases. Marginal Bayesian and Akaike Information Criteria also have some
difficulty to select the true model when the design for random effects is nested.

Keywords: linear mixed models, variance components, selection, Akaike Information Criteria,
Bayesian Information Criteria, conditional distribution, maximum likelihood estimation

1. Introduction

Linear mixed models are useful statistical models in which various dependency among responses can
be incorporated using the framework of linear models. Dependency or correlation among observations
can be implemented by introducing random effects and observations with the same random effect that
are correlated so that linear mixed models can analyze data in which various levels of dependency
occur. For example, in a longitudinal study, responses from the same subject are supposed to be
correlated for genetics traits of siblings from the same parent that have strong dependency. Hence,
linear mixed models are widely used for data analysis in many research fields such as medicine,
epidemiology, psychometrics and genetics.

If a researcher is interested in a specification of the regression mean of responses rather than co-
variance structure, linear mixed models can be considered as usual general linear models in which
covariance of responses can be modeled as a positive definite matrix with a small number of nuisance
parameters. Traditional methods to select regression variables in general linear models can be used
without modification. For example, Akaike Information Criteria (AIC) or Bayesian Information Cri-
teria (BIC) could be used for model selection in linear mixed models. Linear mixed models can give
specific structure of dependency among responses; therefore, different specification of random effects
leads to different covariance structure of observations. It is important to select random effects to deter-
mine covariance structure as well as select fixed effects to specify mean structure of responses. Linear
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mixed models specify covariance structure of responses and prediction of a response within a group
or level which is explained by the same random effect. In such cases, it is important to select a model
for random effects as much as selecting fixed effects. This creates difficulty in developing statistical
methods to select fixed and random effects simultaneously, since the objective of data analysis using
linear mixed models could have many folds.

Recently, modifications of traditional model selection methods using information criteria are de-
veloped to focus on different objectives of linear mixed models in analyzing complex data. Con-
ditional Akaike Information Criteria (cAIC) is a major modification and its objective is to provide
model selection methods for cluster level focus. The prediction at the group level is conditional on
the corresponding random effect; therefore, cAIC is using conditional likelihood with predicted ran-
dom effects instead of marginal likelihood. Also cAIC includes random effects when enumerating
the number of parameters with certain weights as well as the number of unknown fixed parameters.
Vaida and Blanchard (2005) proposed the conditional model selection formation in terms of cAIC
with effective degrees of freedom that account for certain shrinkage weight in the random effects un-
der assumption of known variance parameters for random effects. Liang et al. (2008) proposed a
bias-corrected cAIC that accounts for uncertainty in the estimation of the variance parameters, but
its implementation could be computationally intensive since it uses numerical differentiation. Greven
and Kneib (2010) developed and explicit formulation of bias-corrected cAIC by Liang et al. (2008)
so that the corrected cAIC good be obtained without numerical differentiation.

Theoretical properties of cAIC and corrected versions are derived by Greven and Kneib (2010), but
it is limited since it does not show properties for consistency and efficiency in the selection procedures.
Many researchers investigate performance of model selection methods for linear mixed models by
using simulation studies since it is complicated to derive theoretical properties of cAIC in linear mixed
models. But, as indicated in Müller et al. (2013), simulation studies are not comprehensive since most
of them use very simple models such as random intercept model. The most comprehensive simulation
studies are provided by Dimova et al. (2011), but their studies do not include bias-corrected cAIC and
its focus is the selection of fixed effects under simple structure for random effects. It is important to
investigate the performance of bias-corrected cAIC in comparison with other criteria especially when
structure for random effects is complicated and the main interest is selecting random effects rather
than fixed effects.

In this paper, performance of bias-corrected cAIC is investigated under the nested design for
random effects as well as multivariate random effect for longitudinal data in comparison with other
selection methods based on information criteria. The nested design and longitudinal data are common
in real data analysis and the selection of the structure of random effects is crucial in fields such as
genetics and paediatrics. Hence, the focus on model selection in this paper is to select the structure
of random effects in linear mixed models rather than selecting fixed effects. There are two methods
for estimation of variance components, one is ordinary maximum likelihood estimation and another
is restricted (or residual) maximum likelihood estimation. In this paper, I consider only maximum
likelihood estimation for simplicity of presentation since the performance between two methods in
model selection is similar.

In Sections 2 and 3 brief review for linear mixed models and model selection methods based on
information criteria are provided respectively and Section 4 provides simulation studies. Finally Sec-
tion 5 includes some comments on simulation studies and the conclusion. Programs for computation
for all methods in this paper are written by JULIA in http://julialang.org/ and all programs can
be found in https://github.com/ilovealldata/SelectMixedModels.
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2. Linear Mixed Models

Linear mixed models is defined by

y = Xβ + Zb + ϵ, (2.1)

where y is n × 1 response vector, X is n × p design matrix for fixed effect with parameter β which
is p × 1 vector. The known matrix Z is n × q design matrix for q × 1 vector b for unknown random
effects. Sometimes Z and b can be partitioned into Z = diag(Z1,Z2, . . . ,Zm) and b = (bt

1, b
t
2, . . . , b

t
m)

according to grouping levels. Also ϵ = (ϵ1, ϵ2, . . . , ϵn)t is n × 1 vector for random errors.
The distribution of random error ϵi follows normal distribution with mean 0 and variance σ2 > 0

and all random errors are assumed independent. The distribution of random effects follows multi-
variate normal distribution N(0, σ2Σ) where relative covariance matrix Σ is determined by unknown
parameters for variance components τ = (τ1, τ2, . . . , τr)t and relative covariance matrix Σ = Σ(τ) is
assumed to be non-negative definite since a variance component is allowed to be zero (i.e., τ j = 0 for
some j’s). I will define parameter vector θ by θ = (βt, τt, σ2)t which includes all unknown parameters
in linear mixed model (2.1). Then, mean and covariance V of response vector y is defined by

E(y) = Xβ and Var(y) = σ2
(
I + ZΣZt

)
:= V = σ2V∗,

where V∗ = (I + ZΣZt) is relative covariance of y to the error variance σ2.
Now the marginal log likelihood function ℓ(θ|y) for linear mixed models (2.1) is given by

−2ℓ(θ|y) = log |V | + (y − Xβ)tV−1(y − Xβ) = n logσ2 + log |V∗| +
1
σ2 (y − Xβ)tV−1

∗ (y − Xβ). (2.2)

The estimator of β and σ2 based on maximum likelihood estimation when V∗ is assumed to be known
are given by

β̂ =
(
XtV−1

∗ X
)−1

XtV−1
∗ y and σ̂2 =

1
n

(
y − Xβ̂

)t
V−1
∗

(
y − Xβ̂

)
. (2.3)

In practice, relative covariance V∗ is replaced with estimated one V̂∗. If the maximum likelihood
estimators are plugged in the marginal log likelihood function in (2.2), it leads to the profile likelihood
function ℓ(τ|y, β̂, σ̂2) for variance components τ and it is given by, up to constant,

−2ℓ
(
τ|y, β̂, σ̂2

)
= log |V∗| + n log

(
y − Xβ̂

)t
V−1
∗

(
y − Xβ̂

)
. (2.4)

The variance components τ can be estimated by maximizing the profile likelihood function (2.4) in
terms of parameter τ and it is commonly done using an algorithm for nonlinear optimization.

The random effect b is an unobservable quantity; however, its prediction is commonly main inter-
est. The best linear unbiased prediction (BLUP) under known V∗ is frequently used to predict random
effects in the model (2.1) and it is given by

b̂ = ΣZV−1
∗

(
y − Xβ̂

)
(2.5)

and unknown parameters in V∗ (so Σ) are replaced by estimated ones in practice.
Commonly, if interest of research is prediction of new response from the same level or group

specified in the model, prediction could be based on the linear model conditional on random effects
such that

y|b ∼ N
(
Xβ + Zb, σ2I

)
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which leads to the conditional distribution y given b and it is defined by

−2 log f (y|b) = n logσ2 +
1
σ2 (y − Xβ − Zb)t(y − Xβ − Zb). (2.6)

This conditional distribution f (y|b) has an important role in defining cAIC which is proposed for
prediction of new observation when new observation is assumed to share the same random effect
specified in the given model. All details in theory and its application of linear mixed models can be
found in Searle et al. (1992) and McCulloch and Searle (2001).

3. Review of Model Selection Methods based on Akaike Information Criteria

Model selection methods for linear models based on Information Criteria are well-developed and most
frequently used methods are BIC and AIC. AIC for given parametric statistical model f (y|θ) is defined
as

AIC = −2ℓ
(
θ̂
∣∣∣y) + 2ρ,

where ℓ(θ|y) is the log likelihood function based on the distribution f (y|θ) and ρ is number of unknown
parameters θ in the model specified by f (y|θ). Also BIC is defined by

BIC = −2ℓ
(
θ̂
∣∣∣y) + (log n)ρ.

Main difference between AIC and BIC is the leading constant in the penalty term, which is 2 and
log n respectively. The penalty term in BIC increases as number of responses n increases; therefore,
performance of BIC is different from AIC and BIC is known to be consistent in sense that BIC prefer
to sparse model among candidate models which includes true model. However, AIC is efficient and
not consistent in the sense that a selected model by AIC gives the most less predictive mean squared
error among candidate models.

The definition for BIC and AIC for linear model can be extended to linear mixed models in (2.1)
easily. When BIC and AIC are defined for linear mixed models, the marginal likelihood function in
(2.2) should be used and the number of unknown parameters in θ = (βt, τt, σ2)t is p + r + 1. Hence,
marginal BIC (mBIC) and marginal AIC (mAIC) for linear mixed models can be defined by

mAIC = −2ℓ
(
θ̂
∣∣∣y) + 2(p + r + 1) and mBIC = −2ℓ

(
θ̂
∣∣∣y) + (log n)(p + r + 1). (3.1)

Note that the term ‘marginal’ is used since mBIC and mAIC are based on the marginal likelihood
instead of conditional distribution given random effects.

Vaida and Blanchard (2005) proposed the conditional model selection formation based on the
conditional distribution of responses given by random effects as defined in (2.6). The proposed meth-
ods commonly called as cAIC and the number of parameters in penalty terms is implemented as the
effective degree of freedom accounting for certain shrinkage weight in the random effect under the
assumption of known variance parameters for random effects. Vaida and Blanchard (2005) proposed
conditional Akaike Information such that

cAI = −2Eg(y,u)Eg(y∗ |u) log f
(
y∗

∣∣∣θ̂(y), b̂(y)
)
, (3.2)

where g(y, u) is the true joint distribution of responses y and random effects u. f (y|θ, b) is the con-
ditional distribution of y given b with unknown parameter θ defined in (2.6). Note that conditional
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Akaike Information (3.2) is different from the marginal Akaike Information which should be estimated
by marginal AIC in (3.1). The marginal Akaike Information is defined by

mAI = −2Eg(y)Eg(y∗) log f
(
y∗

∣∣∣θ̂(y)
)

and its estimator mAIC in (3.1) is based on the marginal likelihood in (2.2).
Assuming the error variance σ2 and variance components τ are known, the cAIC is derived as

cAIC = −2 log f
(
y∗

∣∣∣θ̂(y), b̂(y)
)
+ 2ρ, (3.3)

where ρ is the effective degrees of freedom whose value lies between number of fixed effects β and
the total number of fixed effects and random effects. The value of ρ is defined by

ρ = trace(H1) = tr

(X Z
) (XtX XtZ

ZtX ZtZ + Σ−1

)−1 (
Xt

Zt

) = tr


(
XtX XtZ
ZtX ZtZ + Σ−1

)−1 (
XtX XtZ
ZtX ZtZ

) , (3.4)

where H1 is the pseudo projection matrix for ŷ = Xβ̂ + Zb̂ = H1y.
The formula for ρ in (3.4) is developed under the assumption that the error variance and variance

components are known; therefore, several adjustments have been developed in cases of unknown error
variance and variance components. Vaida and Blanchard (2005) propose adjustment for ρ when the
error variance σ2 is unknown but variance components τ are known and it gives

cAIC = −2 log f
(
y∗

∣∣∣θ̂(y), b̂(y)
)
+ 2K, (3.5)

where K is given by

K =
n(n − p − 1)

(n − p)(n − p − 2)
(ρ + 1) +

n(p + 1)
(n − p)(n − p − 2)

and p is number of column in X, the number of fixed effects. Further, when variance components
τ are unknown, Vaida and Blanchard (2005) proposed that ρ can be replaced with estimated version
ρ̂ = ρ(Σ̂).

Liang et al. (2008) provided an alternative presentation for cAIC by using Stein’s formula (Stein,
1981) and when the error variance σ2 is known but variance components τ are unknown, cAIC is
derived as

cAIC = −2 log f
(
y∗

∣∣∣θ̂(y), b̂(y)
)
+ 2Φ0, where Φ0 =

n∑
i=1

∂ŷi

∂yi
= trace

(
∂ŷt

∂y

)
. (3.6)

Note that when both the error variance and variance components are known, Φ0 = ρ in (3.4). Liang et
al. (2008) also showed that Φ0 can be calculated in terms of ρ and H1 in (3.4) such that

Φ0 = ρ̂ + 1tD
(
Σ̂
)

y, (3.7)

where ρ̂ = ρ(Σ̂), 1 is the vector of ones and D(Σ̂) = {di j} is n × n matrix with its (i, j)th element di j is
defined by partial derivative of Ĥ1 = H1(Σ̂) = {hi j} in (3.4) with respect to y such that

di j =
∂hi j

∂yi
.
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Even though their forms are simple, the penalty terms in (3.6) and (3.7) require numerical differenti-
ation at least n times so that it is not practical when number of responses n becomes large. Note that
Liang et al. (2008) proposed cAIC when both the error variance and variance components are known,
but its evaluation requires a second order numerical differentiation so that it is not easy to calculate.

Greven and Kneib (2010) give explicit formula for penalty term of cAIC in (3.6) without differen-
tiation and its form is given by

Φ0 = ρ̂ +

s∑
i=1

et
i B̂
−1ĜÂŴiÂy, (3.8)

where s ≤ r is the number of non-zero estimates in variance components τ = (τ1, τ2, . . . , τr)t,
Wi = ∂V∗/∂τi, A = V−1

∗ − V−1
∗ X(XtV−1

∗ X)−1XtV−1
∗ , and G is s × n matrix whose ith row is given

by 2{(ytAy)ytAWiA − (ytAWiAy)ytA} and B = {bi j} is s × s the negative definite matrix with its (i, j)th

element bi j is defined by

bi j =
(
ytAy

)2 trace
(
Ui jV−1−WiV−1WjV−1

)
n

−
(
ytAWiAy

) (
ytAWjAy

)
−

[
yt
(
AUi jA− 2AWiAWjA

)
y
](

ytAy
)
,

where Ui j = ∂2V/∂τi∂τ j. Note that the nonzero estimates (τ̂1, τ̂2, . . . , τ̂s) are plugged in B,G, A,
Wi,Ui j for evaluation of (3.8).

Even though its formulation in (3.8) looks complicated, the derivatives Wi and Ui j can be eas-
ily calculated in practice since most common form for ZtΣZ in V∗ is diagonal such that ZtΣZ =∑r

k=1 τkZt
kΣkZk where Σk’s are known and Ui j = 0 for this case.

4. Simulation Study

4.1. Design for models and parameters

A simulation study is considered to evaluate the performance various methods based on Akaike Infor-
mation Criteria. The true linear mixed model for simulation study has the following model formula-
tion:

yi jk = ai + (β0 + b0i j) + (β1 + b1i j)ti jk + ϵi jk, (4.1)

for i = 1, 2, . . . , I; j = 1, 2, . . . , J; k = 1, 2, . . . ,K. In the true model (4.1), ai is the random effect for
the first group level and it is assumed that ai ∼ N(0, σ2

a). The second group level, which is nested
within the first level i, consists of a linear trend with fixed effects β0 + β1t for population level and the
bivariate random effects (b0i j, b1i j)t for individual effects.The bivariate random effects follow bivariate
normal distribution such that (

b0i j

b1i j

)
∼ N

((
0
0

)
,

(
σ2

b0 ϕσb0σb1
ϕσb0σb1 σ2

b1

))
, (4.2)

where ϕ is correlation between b0i j and b1i j. Finally independent random errors ϵi jk’s follow the
normal distribution N(0, σ2) and it is assumed that all ai’s, (b0i j, b1i j)t’s, ϵi jk’s are independent.

In terms of parameter specification for linear mixed models (2.1), we can consider β = (β0, β1)t

and (τ1, τ2, τ3, τ4) = (σ2
a, σ

2
b0, σ

2
b1, ϕσb0σb1). Note that parameter space for variance components τi is

[0,∞), which includes boundary point 0, for i = 1, 2, 3 and the variance component τ4 leads to zero
when either τ2 or τ3 is estimated by zero.
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Table 1: Specification of parameters in variance components in the true model (4.1) for simulation

Case σa (σb0, σb1) ϕ

1 0.5 (1.0, 1.0) 0.5
2 2.0 (1.0, 1.0) 0.5
3 4.0 (1.0, 1.0) 0.5
4 1.0 (2.0, 0.5) 0.5
5 1.0 (4.0, 0.25) 0.5
6 1.0 (4.0, 0.125) 0.5
7 1.0 (0.5, 0.5) 0.5
8 1.0 (2.0, 2.0) 0.5
9 1.0 (4.0, 4.0) 0.5

10 1.0 (1.0, 1.0) 0.2
11 1.0 (1.0, 1.0) 0.5
12 1.0 (1.0, 1.0) 0.8

For example, in the model (4.1), the first level could be a school whose effect is ai and the second
level could be a student within the school. Then, a student has responses along several time points and
responses in time follows a simple linear trend. Hence the fixed effects (β0, β1) represent population
linear model and the random effects (b0i j, b1i j) represent a student’s individual effect on the linear
model.

For simulation study, the fixed parameters (β0, β) = (3, 2) and the error variance σ = 1.0 for ϵi jk

are fixed for all cases. Then, 12 combinations of parameters for variance components are considered
(Table 1). The first three cases in Table 1 investigate the effects of variance size for the first level
and the next 6 cases evaluate the effects of different variance components for the second level. The
last three cases are considered to see the effects of different correlations for bivariate random effects
in the second level. The number of parameters r for unknown variance components in Table 1 is the
dimension of τ = (τ1, τ2, . . . , τr)t which specifies covariance Σ = Σ(τ) of random effects b. Some of
the maximum likelihood estimates for τ could be zero and the number of positive estimates s for τ
could therefore be less than or equal to the number of specified parameters in the model (s ≤ r).

Regarding sample size in the simulation study, we consider two schemes for the model (4.1). The
first scheme uses I = 10, J = 2,K = 5 which lead to the total number of responses is n = 10× 2× 5 =
100 and the second scheme uses I = 20, J = 4,K = 5 which lead to the total number of responses is
n = 400. The time point ti jk in the model (4.1) has five time points such that ti jk = k in all cases.

Settle candidate models for given data are considered in practice and the best is selected based
on the applied model selection criteria. Hence, we consider ten different models in this simulation
to mimic a real situation (Table 2). All models include the same fixed effects term β0 + β1ti jk in the
true model (4.1) since main interest of simulation study to evaluate the performance of the selection
methods for structure of random effects. The simplest model includes just random effect ai for the first
level. Then, the complexity of structure for random effects increases by adding more random effect as
well as the correlation structure among random effects. The second order quadratic term (β2 + b2i j)t2

i jk
is also included in some models for more complexity. The true model which generates data is at the
seventh model and the most complex model including the true model (4.1) is the last model in Table
2.

We consider ten candidate models for simulation; however, the number of candidate models se-
quentially increased in the simulation study. First, the simplest six models (from Model 1 to 6 in
Table 2) are considered candidate models in order to select the best one based on the selection method
so that this design represents a situation where candidate models do not include the true model. The
numbers of candidate models increase by adding one more model which is more complex sequen-
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Table 2: Ten candidate models for simulation

No. Model specification Correlation for Number of parameters
mulitivar. random effects for variance comp. (r)

1 yi jk = ai + β0 + β1ti jk + ϵi jk 1
2 yi jk = (β0 + b0i j) + β1ti jk + ϵi jk 1
3 yi jk = ai + (β0 + b0i j) + β1ti jk + ϵi jk 2
4 yi jk = (β0 + b0i j) + (β1 + b1i j)ti jk + ϵi jk (b0i j, b1i j are independent) 2
5 yi jk = ai + (β0 + b0i j) + (β1 + b1i j)ti jk + ϵi jk (b0i j, b1i j are independent) 3
6 yi jk = (β0 + b0i j) + (β1 + b1i j)ti jk + ϵi jk (b0i j, b1i j are correlated) 3
7 yi jk = ai + (β0 + b0i j) + (β1 + b1i j) + ϵi jk (b0i j, b1i j are correlated) 4(true model)
8 yi jk = ai + (β0 + b0i j) + (β1 + b1i j)ti jk + (β2 + b2i j)t2i jk + ϵi jk (b0i j, b1i j, b2i j are independent) 4
9 yi jk = (β0 + b0i j) + (β1 + b1i j)ti jk + (β2 + b2i j)t2i jk + ϵi jk (b0i j, b1i j, b2i j are correlated) 6
10 yi jk = ai + (β0 + b0i j) + (β1 + b1i j)ti jk + (β2 + b2i j)t2i jk + ϵi jk (b0i j, b1i j, b2i j are correlated) 7

Table 3: Relative frequencies of selected models by four methods when sample size n = 100

Selected Candidate models

model 1–6 1–7 1–8 1–9 1–10
mBIC mAIC cAIC bAIC mBIC mAIC cAIC bAIC mBIC mAIC cAIC bAIC mBIC mAIC cAIC bAIC mBIC mAIC cAIC bAIC

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.02 0.01 0.00 0.00 0.02 0.01 0.00 0.00 0.02 0.01 0.00 0.00 0.02 0.01 0.00 0.00 0.02 0.01 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.18 0.06 0.17 0.02 0.17 0.05 0.13 0.02 0.17 0.05 0.06 0.01 0.17 0.05 0.03 0.00 0.17 0.05 0.02 0.00
5 0.09 0.11 0.66 0.22 0.03 0.02 0.28 0.04 0.03 0.02 0.11 0.02 0.03 0.02 0.05 0.00 0.03 0.02 0.04 0.00
6 0.71 0.82 0.17 0.76 0.64 0.61 0.03 0.19 0.64 0.60 0.03 0.17 0.64 0.57 0.01 0.02 0.64 0.56 0.01 0.01

7(T) x x x x 0.14 0.31 0.55 0.75 0.14 0.31 0.50 0.67 0.14 0.31 0.34 0.22 0.14 0.29 0.17 0.07
8 x x x x x x x x 0.00 0.00 0.30 0.14 0.00 0.00 0.09 0.02 0.00 0.00 0.06 0.00
9 x x x x x x x x x x x x 0.00 0.05 0.49 0.74 0.00 0.04 0.16 0.38

10 x x x x x x x x x x x x x x x x 0.00 0.02 0.54 0.54

Candidate models correspond to numbers considered for selection listed in Table 2.
† BIC = Bayesian Information Criteria; AIC = Akaike Information Criteria; mBIC = marginal BIC; mAIC = marginal AIC;

cAIC = conditional AIC; bAIC = bias-corrected conditional AIC.

tially. As soon as Model 7 in Table 2 is included in the sequential design, it considers the true model
in candidates. The final design considers all 10 candidate models with the most complex model that
include the true model.

4.2. Simulation and its results

Four selection methods are considered: mBIC and mAIC in (3.1), cAIC in (3.5), bAIC in (3.8) in the
simulation study for to compare the performance of model selection methods for linear mixed models.
Note that bias-corrected cAIC in (3.8) by Greven and Kneib (2010) is an explicit version of cAIC in
(3.7) which requires numerical differentiation.

I use 1000 iterations to generate responses from the true model (4.1) for each specification for
parameters in variance components listed in Table 1 under two different sample size n = 100 and
n = 400. For each iteration, four selection methods are applied to the models in Table 2 with generated
data; subsequently, the best one is selected based on each selection method.

To assess the overall performance of four methods, the relative frequencies of selected models
under all 12 combinations of parameter settings are listed under five designs in which the number of
candidate models are increasingly sequential. Tables 3 and 4 list the results of the simulation study
for sample size n = 100 and n = 400, respectively.

For the design where the true model is not included (candidates Models 1–6 in Tables 3 and 4), the
Model 6 (the model with correlated random effects for the second level and without the random effect
for the first level) is mostly (71–87%) preferred by mBIC, mAIC and bAIC, but cAIC prefer Model 5
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Table 4: Relative frequencies of selected models by four methods when sample size n = 400

Selected Candidate models

model 1–6 1–7 1–8 1–9 1–10
mBIC mAIC cAIC bAIC mBIC mAIC cAIC bAIC mBIC mAIC cAIC bAIC mBIC mAIC cAIC bAIC mBIC mAIC cAIC bAIC

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.07 0.02 0.14 0.01 0.06 0.02 0.12 0.01 0.06 0.02 0.06 0.00 0.06 0.01 0.03 0.00 0.06 0.01 0.03 0.00
5 0.10 0.11 0.76 0.20 0.01 0.01 0.31 0.02 0.01 0.00 0.12 0.01 0.01 0.00 0.07 0.00 0.01 0.00 0.05 0.00
6 0.83 0.87 0.10 0.79 0.69 0.51 0.01 0.13 0.69 0.51 0.01 0.12 0.69 0.48 0.01 0.01 0.69 0.48 0.01 0.00

7(T) x x x x 0.24 0.47 0.56 0.84 0.24 0.47 0.52 0.78 0.24 0.46 0.40 0.27 0.24 0.44 0.24 0.04
8 x x x x x x x x 0.00 0.00 0.29 0.09 0.00 0.00 0.11 0.01 0.00 0.00 0.07 0.00
9 x x x x x x x x x x x x 0.00 0.04 0.37 0.71 0.00 0.03 0.13 0.32

10 x x x x x x x x x x x x x x x x 0.00 0.03 0.46 0.64

Candidate models correspond to numbers considered for selection listed in Table 2.
† BIC = Bayesian Information Criteria; AIC = Akaike Information Criteria; mBIC = marginal BIC; mAIC = marginal AIC;

cAIC = conditional AIC; bAIC = bias-corrected conditional AIC.

(the model with the random effect for the first level and with independent random effects for the second
level). As soon as the true model is included in candidate models (candidates Models 1–7 in Tables 3
and 4), bAIC selects the true model mostly (75%, 84%) and cAIC selects the true model about 55%
and still select the model with independent random effects about 30%. However, mBIC still selects the
model without random effect for the first level mostly about 65% and mAIC shows similar behavior
to mBIC and selects the complex model than mBIC. After an unnecessary quadratic term t2

i jk with
independent random effects is included in candidate models (candidates Models 1–8 in Tables 3 and
4), performance of mBIC, mAIC, and bAIC do not change, but cAIC starts preferring the model with
quadratic term to simple models. Then, after unnecessary quadratic term t2

i jk with correlated random
effects but without random effect for the first level is included (candidates Models 1–9 in Tables 3 and
4), both cAIC and bAIC start selecting more complex models than the true models, but mBIC and
mAIC show similar behavior before including unnecessary terms. Finally the most complex model
including the true model is considered (candidates Models 1–10 in Tables 3 and 4), both cAIC and
bAIC start selecting the most complex models and the behavior of mBIC and mAIC does not change
either.

Performance of four selection methods (shown in Tables 3 and 4) can be summarized as

• mBIC prefers sparse models more than the true model mostly and it especially fails to catch the
first level effect in the nested design.

• mAIC selects the true model about 50% mostly and it also fails to catch the first level effect in the
nested design.

• cAIC selects the true model less than 60% mostly but starts preferring the complex model to the
true model intensively.

• Bias-corrected cAIC prefers the true model more than 70% when candidate models do not include
the larger model than the true model. However, it starts preferring over-parametrized model to the
true model intensively when candidate models include larger models.

• The performance of all methods to select the true model improves as sample size increases; how-
ever, the described pattern of selection does not change very much.

The most interesting behavior in this simulation study is that mBIC and mAIC fail to select models
that include the random effect ai for the first level in the true model (4.1). The simulation study in this
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Table 5: Relative frequencies of selected models by four methods when only variance component for the first
level is changed

Selected n = 100

model σa = 0.5 σa = 1.0 σa = 2.0 σa = 4.0
mBIC mAIC cAIC bAIC mBIC mAIC cAIC bAIC mBIC mAIC cAIC bAIC mBIC mAIC cAIC bAIC

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.05 0.01 0.07 0.00 0.22 0.05 0.04 0.01 0.19 0.02 0.01 0.00 0.05 0.01 0.00 0.00
5 0.00 0.00 0.11 0.00 0.02 0.02 0.12 0.02 0.05 0.02 0.08 0.01 0.17 0.05 0.04 0.02
6 0.94 0.89 0.08 0.31 0.70 0.67 0.02 0.14 0.35 0.22 0.00 0.04 0.02 0.01 0.00 0.00

7(T) 0.01 0.10 0.48 0.62 0.06 0.25 0.45 0.66 0.41 0.74 0.71 0.81 0.75 0.93 0.79 0.83
8 0.00 0.00 0.26 0.07 0.00 0.00 0.37 0.17 0.00 0.00 0.19 0.14 0.00 0.01 0.17 0.15

Selected n = 400

model σa = 0.5 σa = 1.0 σa = 2.0 σa = 4.0
mBIC mAIC cAIC bAIC mBIC mAIC cAIC bAIC mBIC mAIC cAIC bAIC mBIC mAIC cAIC bAIC

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.09 0.00 0.00 0.00 0.04 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.13 0.00 0.00 0.00 0.12 0.00 0.01 0.00 0.06 0.00 0.03 0.00 0.03 0.00
6 0.98 0.86 0.06 0.30 0.84 0.52 0.01 0.10 0.15 0.03 0.00 0.01 0.00 0.00 0.00 0.00

7(T) 0.02 0.14 0.47 0.68 0.16 0.48 0.57 0.85 0.82 0.97 0.77 0.92 0.97 1.00 0.85 0.92
8 0.00 0.00 0.25 0.02 0.00 0.00 0.26 0.05 0.00 0.00 0.17 0.07 0.00 0.00 0.12 0.08

Only cases 1, 2 and 3 are considered for specification of parameters in Table 1;
Candidate models are from number 1 to 8 as listed in Table 2.
† BIC = Bayesian Information Criteria; AIC = Akaike Information Criteria; mBIC = marginal BIC; mAIC = marginal AIC;

cAIC = conditional AIC; bAIC = bias-corrected conditional AIC.

paper considers a nested design for the first time among recent research papers. For more information,
the performance of selection methods is investigated for cases where the variance component σa

changes only when others are fixed. Table 5 shows relative frequencies to select models among four
methods when σa increases. The results in Table 5 show that mBIC and mAIC select the model
without the random effect ai for the first level more often than the true model when sample size and
value of σa are relatively small. The performance of mBIC and mAIC is comparable to cAIC and
bias-corrected cAIC when sample size and value of σa increases; consequently, simulation results
indicate that more attention is needed when using mBIC and mAIC under nested designs.

4.3. Simulation using real data

A small simulation study using real data is also considered to verify results from simulation study
with artificial data. I use data from a pharmacokinetics dataset from a Cadralazine study in Vaida and
Blanchard (2005), which consists of 6 repeated measures from each 10 subjects. Original responses
are plaza drug concentrations from 30mg of Cadralazine. The analyzed responses are log transforma-
tion of concentrations subtract by the log of dose amount. In this simulation study, the estimates of
parameters from fitting the linear mixed effect model (no. 6 and no. 7 in Table 2) are considered true
parameters. For estimation stability, the number of subjects changes from 10 to 20 and the number
of groups is set to 10. There is no other grouping factor in original data; however, random effects for
artificial grouping factor are added to responses with various scales relative to the error variance. We
compare four selection methods, as similar to the simulation study with artificial data under the first 8
candidate models.

Table 6 shows similar patterns to results by the simulation study in the previous section. mBIC and
mAIC fails to catch the grouping factor even though its variance σ2

a increases and also dependency
between random effects b0 and b1 are ignored for all cases. cAIC and bAIC prefer to over-parametrize
models in most cases.
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Table 6: Relative frequencies of selected models by four methods for simulation using parameters from real
data (n = 240)

Relative value of σb to σϵ
Model σa = 0.0 σa = (0.5)σϵ σa = (1.0)σϵ σa = (2.0)σϵ σa = (3.0)σϵ

mBIC mAIC cAIC bAIC mBIC mAIC cAIC bAIC mBIC mAIC cAIC bAIC mBIC mAIC cAIC bAIC mBIC mAIC cAIC bAIC
1 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.89 0.74 0.08 0.04 0.93 0.74 0.08 0.00 0.92 0.76 0.11 0.05 0.90 0.76 0.11 0.08 0.94 0.74 0.09 0.05
5 0.00 0.00 0.11 0.04 0.00 0.00 0.12 0.06 0.00 0.01 0.08 0.02 0.00 0.00 0.13 0.05 0.00 0.00 0.10 0.06
6 0.11 0.26 0.31 0.27 0.05 0.22 0.36 0.34 0.07 0.22 0.32 0.24 0.09 0.20 0.31 0.25 0.06 0.21 0.30 0.18
7 0.00 0.00 0.12 0.33 0.00 0.00 0.05 0.26 0.00 0.00 0.01 0.20 0.01 0.02 0.09 0.22 0.00 0.02 0.13 0.27
8 0.00 0.00 0.38 0.32 0.01 0.04 0.39 0.34 0.00 0.01 0.48 0.49 0.00 0.02 0.36 0.40 0.00 0.03 0.38 0.44

Candidate models are from number 1 to 8 as listed in Table 2.
† BIC = Bayesian Information Criteria; AIC = Akaike Information Criteria; mBIC = marginal BIC; mAIC = marginal AIC;

cAIC = conditional AIC; bAIC = bias-corrected conditional AIC.

5. Conclusions

In linear mixed models, it is not easy to select models since the main interest of model building
could be different and the number of parameters in the models is unclear. Therefore, many different
methods to select linear mixed models are developed under different assumptions and circumstances.
This development can interfere with research and it is very difficult to choose an appropriate selection
method for the given purpose and interest of research. It also represents another obstacle for choosing
a model selection method in the linear mixed model because most of newly proposed methods have
computational complexity.

We compared four methods for model selection: mBIC, mAIC, cAIC and bias-corrected cAIC.
Bias-corrected cAIC shows promising performance when candidate models do not included larger
models that contain the true model and it is improved from the original cAIC as indicated by its
developer. But still bias-corrected cAIC prefers complex model intensively than other methods based
on the marginal distribution of linear mixed models. This fact is consistent with theoretical properties
of mAIC. It also turns out that mBIC and mAIC have some difficulty in selecting random effects when
the design is nested so that more careful attention should be needed applying selection methods based
on marginal distributions.

The main findings in this paper provide several new research topics such that performance of
model selection methods for linear mixed models should be investigated under more complex nested
designs. It is also worthwhile to develop model selection method based on the conditional distribution
to prevent intensive preference to the over-parametrized model in cAIC.
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