Browse > Article

Toxicity Evaluation of Complex Metal Mixtures Using Reduced Metal Concentrations: Application to Iron Oxidation by Acidithiobacillus ferrooxidans  

Cho, Kyung-Suk (Department of Environmental Engineering, Ewha Womans University)
Ryu, Hee-Wook (Department of Chemical and Environmental Engineering, Soongsil University)
Choi, Hyung-Min (Department of Organic Materials and Fiber Engineering, Soongsil University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.7, 2008 , pp. 1298-1307 More about this Journal
Abstract
In this study, we investigated the inhibition effects of single and mixed heavy metal ions ($Zn^{2+},\;Ni^{2+},\;Cu^{2+},\;and\;Cd^{2+}$) on iron oxidation by Acidithiobacillus ferrooxidans. Effects of metals on the iron oxidation activity of A. ferrooxidans are categorized into four types of patterns according to its oxidation behavior. The results indicated that the inhibition effects of the metals on the iron oxidation activity were noncompetitive inhibitions. We proposed a reduced inhibition model, along with the reduced inhibition constant ($\alpha_i$), which was derived from the inhibition constant ($K_I$) of individual metals and represented the tolerance of a given inhibitor relative to that of a reference inhibitor. This model was used to evaluate the toxicity effect (inhibition effect) of metals on the iron oxidation activity of A. ferrooxidans. The model revealed that the iron oxidation behavior of the metals, regardless of metal systems (single, binary, ternary, or quaternary), is closely matched to that of any reference inhibitor at the same reduced inhibition concentration, $[I]_{reduced}$, which defines the ratio of the inhibitor concentration to the reduced inhibition constant. The model demonstrated that single metal systems and mixed metal systems with the same reduced inhibitor concentrations have similar toxic effects on microbial activity.
Keywords
Acidithiobacillus ferrooxidans; metal toxicity; reduced inhibition constant; reduced metal concentration; reduced inhibition model;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Agate, A. D. 1996. Recent advances in microbial mining. World J. Microbiol. Biotechnol. 12: 487-495   DOI   ScienceOn
2 Demergasso, C. S., P. A. Galleguillos P., L. V. Escudero G., V. J. Zepeda A., D. Castillo, and E. O. Casamayor. 2005. Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap. Hydrometallurgy 80: 241-253   DOI   ScienceOn
3 Dispirito, A. A. and O. H. Tuovinen. 1982. Kinetics of uranous ion and ferrous iron oxidation by Thiobacillus ferrooxidans and their elimination by subculturing in media containing CuSO4. J. Gen. Microbiol. 129: 2969-2972
4 Imai, K., T. Sugio, T. Tsuchida, and T. Tano. 1975. Effect of heavy metal ions on the growth and iron-oxidizing activity of Thiobacillus ferrooxidans. Agric. Biol. Chem. 39: 1349-1354   DOI
5 Ledue, L. G. and G. D. Ferroni. 1994. The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol. Rev. 14: 103-120   DOI   ScienceOn
6 Magnin, J., F. Bailet, A. Boyer, R. Zlatev, M. Luca, A. Cheruy, and P. Ozil. 1998. Augmentation, par regeneration electrochimique du substrat, de la productiond'nue biomasse (Thiobacillus ferrooxidans DMS 583) pour nn procede biologique de recuperation de metanx. Can. J. Chem. Eng. 76: 978-984   DOI   ScienceOn
7 Rawlings, D. E. 1998. Industrial practice and the biology of leaching of metals from ores. J. Ind. Microbiol. Biotechnol. 20: 268-274   DOI   ScienceOn
8 Wei, W., Z. Zheng, Y. Liu, and X. Xhu. 1998. Optimizing the culture conditions for higher Lnulinase production by Kluyveromyces sp. Y-85 and scaling-up fermentation. J. Ferment. Bioeng. 86: 395-399   DOI   ScienceOn
9 Baillet, F., J. P. Magnin, and A. Cheruy. 1997. Cadmium tolerance and uptake by a Thiobacillus ferrooxidans biomass. Environ. Technol. 18: 631-638   DOI   ScienceOn
10 Ryu, H. W., Y. K. Chang, and S. D. Kim. 1993. Microbial coal desulfurization in an airlift bioreactor by sulfur-oxidizing bacterium Thiobacillus ferrooxidans. Fuel Proc. Technol. 36: 267-275   DOI   ScienceOn
11 Huber, H. and K. O. Stetter. 1990. Thiobacillus cuprinus sp. nov., a novel facultative organotrophic metal-mobilizing bacterium. Appl. Environ. Microbiol. 56: 315-322
12 Bosecker, K. 1997. Bioleaching: Metal solubilization by microorganisms. FEMS Microbiol. Rev. 20: 591-604   DOI
13 Ryu, H. W., K. S. Cho, Y. K. Chang, S. D. Kim, and T. Mori. 1995. Refinement of low-grade clay by microbial removal of sulfur and iron compounds using Thiobacillus ferrooxidans. J. Ferment. Bioeng. 80: 46-52   DOI   ScienceOn
14 Dave, S. R., K. A. Ayappan, and J. V. Bhat. 1979. Biooxidation studies with Thiobacillus ferrooxidans in the presence of copper and zinc. Trans IMM C 88: C234-C237
15 Khalil, M. A., H. M. Abdel-Lateif, B. M. Bayoumi, and N. M. van Straalen. 1996. Analysis of separate and combined effect of heavy metals on the growth of Aporrectodea caliginosa (Oligochaeta; Annelida), using the toxic unit approach. Appl. Soil Ecol. 4: 213-219   DOI   ScienceOn
16 Playle, R. C. 2004. Using multiple metal gill binding models and the toxic unit concept to help multiple-metal toxicity results. Aquat. Toxicol. 67: 359-370   DOI   ScienceOn
17 De, G. C., D. J. Oliver, and B. M. Pesic. 1997. Effect of heavy metals on the ferrous iron oxidizing ability of Thiobacillus ferrooxidans. Hydrometallurgy 44: 53-63   DOI
18 Krebs, W., C. Brombaacher, P. P. Bosshard, R. Bachofen, and H. Brandl. 1997. Microbial recovery of metals from soils. FEMS Microbiol. Rev. 20: 605-617   DOI
19 Posthuma, L., R. Baerselman, R. P. M. Van Veen, and E. M. Dirven-Van Breemen. 1997. Single and joint toxic effect of copper and zinc on reproduction of Enchytraeus crypticus in relation to sorption of metals in soils. Ecotoxicol. Environ. Saf. 38: 108-121   DOI   ScienceOn
20 Brahmaprakash, G. P., P. Devasia, K. S. Jagadish, K. A. Natarajan, and G. R. Rao. 1988. Development of Thiobacillus ferrooxidans ATCC 19859 strains tolerant to copper and zinc. Bull. Mater. Sci. 10: 461-465   DOI
21 Sampson, M. I. and C. V. Phillips. 2001. Influence of base metals on the oxidizing ability of acidophilic bacteria during the oxidation of ferrous sulfate and mineral sulfide concentrates, using mesophiles and moderate thermophilies. Minerals Eng. 14: 317-340   DOI   ScienceOn
22 Silver, M. and A. E. Torma. 1974. Oxidation of metal sulfides by T. ferrooxidans grown on different substrates. Can. J. Microbiol. 20: 141-147   DOI   ScienceOn
23 Box, G. E. P. and K. B. Wilson. 1951. On the experimental attainment of optimum conditions (with discussion). J. Royal Statistical Soc. Series B 13: 1-45
24 Keeling, S. E., M.-L. Palmer, F. C. Caracatsanis, J. A. Johnson, and H. R. Watling. 2005. Leaching of chalcopyrite and sphalerite using bacteria enriched from a spent chalcocite heap. Minerals Eng. 18: 1289-1296   DOI   ScienceOn
25 Blake II, R. C., G. T. Howard, and S. McGinness. 1994. Enhanced yields of iron-oxidizing bacteria by in-situ electrochemical reduction of soluble iron in the growth medium. Appl. Environ. Microbiol. 60: 2704-2710
26 Cabrera, G., J. M. Gomez, and D. Cantero. 2005. Influence of heavy metals on growth and ferrous sulphate oxidation by Acidithiobacillus ferrooxidans in pure and mixed cultures. Proc. Biochem. 40: 2683-2687
27 Das, A., J. M. Modak, and K. A. Natarajan. 1997. Studies on multimetal ion tolerance of Thiobacillus ferrooxidans. Minerals Eng. 10: 743-749   DOI   ScienceOn
28 Harahuc, L., H. M. Lizama, and I. Suzuki. 2000. Selective inhibition of the oxidation of ferrous iron or sulfur in Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 66: 1031-1037   DOI   ScienceOn
29 Kawabe, Y., C. Inoue, K. Suto, and T. Chida. 2003. Inhibitory effect of high concentration of ferric ions on the activity of Acidithiobacillus ferrooxidans. J. Biosci. Bioeng. 96: 375-379   DOI
30 Norris, P. R., L. Parrott, and R. M. Marsh. 1986. Moderately thermophilic mineral-oxidizing bacteria. Biotechnol. Bieng. Symp. 16: 253-262
31 Tuovinen, O. H., S. I. Niemela, and H. G. Gyllenberg. 1971. Tolerance of Thiobacillus ferrooxidans to some metals. Antonie van Leeuwenhoek 37: 489-496   DOI   ScienceOn
32 Van der Geest, H. G., G. D. Greve, M.-E. Boivin, M. H. S. Kraak, and C. A. M. van Gestel. 2000. Mixture toxicity of copper and diazinon to larvae of the mayfly (Ephoron virgo) judging additivity at different effect levels. Environ. Toxicol. Chem. 19: 2900-2905   DOI
33 Pape-Lindstrom, P. A. and M. J. Lydy. 1997. Synergistic toxicity of atrazine and organophosphate insecticides contravenes the response addition mixture model. Environ. Toxicol. Chem. 16: 2415-2420   DOI   ScienceOn
34 An, Y. J., Y. K. Kim, T. I. Kwon, and S. W. Jeong. 2004. Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. Sci. Total Environ. 326: 85-93   DOI
35 Rehm, H. J. and G. Reed (eds.). 1988. Biotechnology, Vol. 6, p. 367. Verlag Chemie