• Title/Summary/Keyword: mixed catalyst

Search Result 233, Processing Time 0.024 seconds

Synthesis of Propylene Glycol via Hydrogenolysis of Glycerol over Mixed Metal Oxide Catalysts (혼합 금속산화물 촉매에서 글리세롤의 수소화 분해반응을 통한 프로필렌 글리콜의 합성)

  • Kim, Dong Won;Moon, Myung Joon;Ryu, Young Bok;Lee, Man Sig;Hong, Seong-Soo
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • Hydrogenolysis of glycerol to propylene glycol was performed over binary and ternary metal oxide catalysts. The conversion of glycerol and selectivity to propylene glycol were increased on Cu/Zn and Cu/Cr mixed oxides compared to pure CuO and ZnO oxides. The addition of alumina into Cu/Zn mixed oxide very highly increased the conversion of glycerol and selectivity to propylene glycol. The conversion of glycerol was increased with increasing the reaction temperature but the selectivity to propylene glycol was shown to have maximum value at $200^{\circ}C$ and then decreased at $250^{\circ}C$. The conversion of glycerol and selectivity to propylene glycol were decreased with increasing the glycerol concentration.

Synthesis of Biodiesel from Soybean Oil over MoO3-SnO2-CeO2 Catalysts (MoO3-SnO2-CeO2 촉매에 의한 대두유로부터 바이오디젤의 합성)

  • Jung, Won Young;Lee, Man Sig;Hong, Seong-Soo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.723-728
    • /
    • 2012
  • The production of biodiesel by transesterification of soybean oil was performed on $MoO_3$, $SnO_2$ and $CeO_2$ mixed oxides. The catalysts were characterized using XRD and $NH_3$-TPD. $MoO_3$ showed the highest activity among the three metal oxides. When 7 wt% of catalysts was introduced into the reactants, the highest activity was obtained and the water added to reactant decreased the catalytic activity. $MoO_3$ and $SnO_2$ mixed with 50:50 showed the highest activity and $CeO_2$ added with 20% on the $MoO_3-SnO_2$ mixed oxide also showed the highest activity. The catalytic activity showed to have a good relationship with the amount of acid site of catalysts. When the waste soybean oil was used as a reactant, the conversion was decreased about 30%.

Kinetic Study on Char-CO2 Catalytic Gasification of an Indonesian lignite (인도네시아 갈탄의 촤-CO2 촉매가스화 반응특성연구)

  • Lee, Do Kyun;Kim, Sang Kyum;Hwang, Soon Choel;Lee, Si Hoon;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.544-552
    • /
    • 2014
  • In this study, We have investigated the kinetics on the char-$CO_2$ gasification reaction. Thermogravimetric analysis (TGA) experiments were carried out for char-$CO_2$ catalytic gasification of an Indonesian Roto lignite. $Na_2CO_3$, $K_2CO_3$, $CaCO_3$ and dolomite were selected as catalyst which was physical mixed with coal. The char-$CO_2$ gasification reaction showed rapid an increase of carbon conversion rate at 60 vol% $CO_2$ and 7 wt% $Na_2CO_3$ mixed with coal. At the isothermal conditions range from $750^{\circ}C$ to $900^{\circ}C$, the carbon conversion rates increased as the temperature increased. Three kinetic models for gas-solid reaction including the shrinking core model (SCM), volumetric reaction model (VRM) and modified volumetric reaction model (MVRM) were applied to the experimental data against the measured kinetic data. The gasification kinetics were suitably described by the MVRM model for the Roto lignite. The activation energies for each char mixed with $Na_2CO_3$ and $K_2CO_3$ were found a 67.03~77.09 kJ/mol and 53.14~67.99 kJ/mol.

Catalytic Ammonia Decomposition on Nitridation-Treated Catalyst of Mo-Al Mixed Oxide (Mo-Al 복합 산화물의 질화반응 처리된 촉매상에서 암모니아 촉매 분해반응)

  • Baek, Seo-Hyeon;Youn, Kyunghee;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.159-168
    • /
    • 2022
  • Catalytic activity in ammonia decomposition reaction was studied on Mo-Al nitride obtained through temperature programmed nitridation of calcined Mo-Al mixed oxide prepared by varying the MoO3 quantity in the range of 10-50 wt%. N2 sorption analysis, X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS) and H2-temperature programmed reduction (H2-TPR), and transmission electron microscopy (TEM) to investigate the physicochemical properties of the prepared catalyst were performed. After calcination at 600 ℃, the XRD of Mo-Al oxide showed γ-Al2O3 and Al2(MoO4)3 phases, and the nitride after nitridation showed an amorphous form. The specific surface area after nitridation by topotactic transformation of MoO3 to nitride was increased due to the formation of Mo nitride, and the Mo nitride was observed to be supported on γ-Al2O3. As for the catalytic activity in the ammonia decomposition reaction, 40 wt% MoO3 showed the best activity, and as the nitridation time increases, the activity increased, and thus the activation energy decreased.

Studies on the Selective Oxidation of Niobium Containing Mixed Metal Oxide Catalysts (니오비움 함유 복합 금속산화물 촉매의 선택산화반응에 관한 연구)

  • Kim, Young-Chul;Kim, Hyeong-Ju;Moon, Dong-Ju
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.129-134
    • /
    • 1998
  • Conversion of propane to acrylonitrile via ammoxidation was studied using physically mixed catalysts composed of $Nb_2O_5(10{\sim}30wt%)$ and $V_{0.4}Mo_1Te_{0.1}$. Catalytic activities of ammoxidation were improved by adding strong acidic niobium oxide to $V_{0.4}Mo_1Te_{0.1}$, the selectivities to acrylonitrile+propylene being remained constant. The maximum activity was obtained at the mixing ratio 25wt% niobium oxide in $Nb_2O_5-V_{0.4}Mo_1Te_{0.1}$. Niobium oxide was found to be a selective catalyst for the oxidative dehydrogenation of propane.

  • PDF

Homogeneous and Catalytic Methanol Synthesis by Partial Oxidation of Methane (메탄의 균일 및 접촉부분산화에 의한 메탄올 합성)

  • Hahm, Hyun-Sik;Choi, Woo-Jin;Hwang, Jae-Young;Ahn, Sung-Hwan;Kim, Myung-Soo;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.56-61
    • /
    • 2005
  • Methanol was synthesized by homogeneous and catalytic reactions of partial oxidation of methane. The effect of pressure, temperature and oxygen concentration on methanol synthesis was investigated. The catalyst used was Bi-Cs-Mg-Cu-Mo mixed oxide. The partial oxidation reaction was carried out in a fixed bed reactor at 20${\sim}$46 bar and $450{\sim}480^{\circ}C$ and oxygen concentration of 5.3${\sim}$7.7mol%. The results were compared with results of homogeneous reaction performed at the same conditions. Methane conversions of the homogeneous and catalytic reactions increased with temperature. Methanol selectivity of the homogeneous reaction decreased with increasing temperature. However, the methanol selectivity of catalytic reaction increased with temperature. For both homogeneous and catalytic reactions, the methane conversions were around 5%. This may be due to the low oxygen concentration. Methanol selectivity of the catalytic reaction was higher than that of homogeneous one.

The Effects of binary metal oxide catalysts for the synthesis of glycerol carbonate (이원계 금속산화물 촉매가 글리세롤카보네이트 합성에 미치는 영향)

  • Baek, Jae-Ho;Moon, Myung-Jun;Lee, Man-Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.456-461
    • /
    • 2012
  • The glycerol carbonate was synthesized by glycerol and urea using metal oxide catalysts. The physical properties of the prepared metal oxide catalysts were investigated by X-ray diffraction (XRD), specific surface area analysis (BET), field emission scanning electron microscopy (FE-SEM) and temperature programmed desorption (TPD). In addition, we confirmed the conversion of the glycerol and the yield of the glycerol carbonate according to characteristics of metal oxide catalysts. From XRD and FE-SEM analysis, the crystallite size and crystallinity of metal oxide catalysts decrease with addition of Al. In addition, the Zn-Al mixed metal oxide had higher catalytic activity than the pure ZnO due to decreased side reaction in the synthesis of glycerol carbonate.

Modification of Carbon Nanotube for the Improvement of Dispersion and the Dispersion Characteristics of Carbon Nanotube in Polyurethane (분산성 향상을 위한 탄소나노튜브의 개질과 폴리우레탄과의 분산 특성)

  • Park, Kyung-Soon;Kim, Seung-Jin;Kim, Jeong-Hyun;Park, Jun-Hyeong;Kwon, Oh-Kyung
    • Textile Coloration and Finishing
    • /
    • v.22 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • The thermal treatment for carbon nanotube was applied to remove the water, metal catalyst and other impurities in carbon nanotube. The surface of carbon nanotube was changed into open structure with acid treatment by mixed solution of $HNO_3$ and $H_2SO_4$. The dispersion property of the functionalized and modified carbon nanotube was assessed with naked eyes by dispersing it in DMF. Carbon nanotube mixd polyurethane film was made to estimate the dispersion property by reflectance of the film with UV-Vis spectrometer. Also the internal structure of carbon nanotube was observed with SEM and TEM and thermal pyrolysis property of the carbon nanotube was measured by TGA and DSC. The surface modification of carbon nanotube by thermal and acid treatments improved the dispersion property of carbon nanotube/polyurethane mixed materials.

Fabrication of Thin Film Dielectric by Hybrid Sol (Hybrid Sol을 이용한 박막 유전체 제작)

  • Kim, Yong-Suk;Yoo, Won-Hee;Chang, Byeung-Gyu;Oh, Yong-Soo
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.185-191
    • /
    • 2007
  • The purpose of this study is to evaluate the thin fihn dielectric made of hybrid sol, which consist of barium titanate powder, polymeric sol and other polymers. This sol will be used dielectric applied to small, thin electric passive components such as MLCC(Multi Layer Ceramic Condenser), resister, inductor. This sol is composed of mixed fine barium titanate powder and polymeric sol including Ba, Ti-precursor, solvent, chelating agent, chemical reaction catalyst, the additive sols to improve fired densification and temperature reliability. First at all, we mixed hybrid sol to be dispersed and be stabilized by ball milling for 24hrs. By spin coating method, we makes thin film dielectric on the convectional green sheet for MLCC. After heat treatments, we analyzes the structure morphology, physical, electrical properties and X5R Temperature properties.

Heterostructured Nanophotocatalysts for Degradation of Organophosphate Pesticides from Aqueous Streams

  • Kaur, Paramjeet;Bansal, Priti;Sud, Dhiraj
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.3
    • /
    • pp.382-388
    • /
    • 2013
  • The present paper focuses on the synthesis, characterization and application of nanophotocatalyst for degradation of quinalphos and monocrotophos. Novel heterostructured ZnO/$TiO_2$ photocatalyst ($Z_9T$) was prepared and characterized with X-ray diffraction (XRD), SEM and UV-vis diffuses reflectance spectroscopy. The average crystalline size of synthesized $Z_9T$ was found to be 21.48 nm. The pesticides were degraded in the presence of nanophotocatalysts i.e., $TiO_2$, ZnO, $TiO_2$/ZnO mixed in various proportions and heterostructured nanophotocatalyst synthesized by Sol-Gel method. The batch experiments were performed by adding photocatalyst to 100 ml of pesticide solution and suspension was subjected to irradiation under UV light. In case of mixed catalyst, the maximum degradation of monocrotophos and quinalphos has been observed when ZnO and $TiO_2$ were in the ratio of 7:3 and 8:2 respectively. The degradation efficiency with synthesized heterostructured nanophotocatalyst ($Z_9T$) was found to be comparable with $TiO_2$.