DOI QR코드

DOI QR Code

Synthesis of Propylene Glycol via Hydrogenolysis of Glycerol over Mixed Metal Oxide Catalysts

혼합 금속산화물 촉매에서 글리세롤의 수소화 분해반응을 통한 프로필렌 글리콜의 합성

  • Kim, Dong Won (Department of Industrial Chemistry, Pukyong National University) ;
  • Moon, Myung Joon (Department of Industrial Chemistry, Pukyong National University) ;
  • Ryu, Young Bok (Green Technology Center, Korea Institute of Industrial Technology) ;
  • Lee, Man Sig (Green Technology Center, Korea Institute of Industrial Technology) ;
  • Hong, Seong-Soo (Department of Chemical Engineering, Pukyong National University)
  • 김동원 (부경대학교 공업화학과) ;
  • 문명준 (부경대학교 공업화학과) ;
  • 류영복 (한국생산기술연구원 친환경청정기술센터) ;
  • 이만식 (한국생산기술연구원 친환경청정기술센터) ;
  • 홍성수 (부경대학교 화학공학과)
  • Received : 2014.01.21
  • Accepted : 2014.03.05
  • Published : 2014.03.31

Abstract

Hydrogenolysis of glycerol to propylene glycol was performed over binary and ternary metal oxide catalysts. The conversion of glycerol and selectivity to propylene glycol were increased on Cu/Zn and Cu/Cr mixed oxides compared to pure CuO and ZnO oxides. The addition of alumina into Cu/Zn mixed oxide very highly increased the conversion of glycerol and selectivity to propylene glycol. The conversion of glycerol was increased with increasing the reaction temperature but the selectivity to propylene glycol was shown to have maximum value at $200^{\circ}C$ and then decreased at $250^{\circ}C$. The conversion of glycerol and selectivity to propylene glycol were decreased with increasing the glycerol concentration.

이원계 및 삼원계 금속산화물 촉매에서 프로필렌 글리콜의 글리세롤의 전환반응을 행하였다. Cu/Zn 및 Cu/Cr 혼합산화물 촉매에서는 단일 금속 산화물에 비해 글리세롤의 전환율과 프로필렌 글리콜의 선택도가 증가하였다. 또한, Cu/Zn 촉매에 Al이 첨가된 혼합산화물 촉매에서는 글리세롤의 전환율과 프로필렌 글리콜의 선택도가 매우 크게 증가하였다. 반응온도가 증가함에 따라 글리세롤의 전환율은 점차 증가하지만 프로필렌 글리콜의 선택도는 $200^{\circ}C$에서 최대값을 보이다가 $250^{\circ}C$에서는 오히려 감소하였다. 글리세롤의 농도가 커질수록 글리세롤의 전환율과 프로필렌 글리콜의 선택도가 감소하였다.

Keywords

References

  1. Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., and Pina, C. D., "From Glycero to Value-Added Products," Angew. Chem., 46, 4434-4440 (2007). https://doi.org/10.1002/anie.200604694
  2. Park, S., and Rang, M., "Recent Studies on New Value-added Glycerol Derivatives," J. Kor. Ind. Eng. Chem., 20, 363-369 (2009). https://doi.org/10.1016/j.jiec.2013.11.050
  3. Mehr, L. C., Gopinath, R., Naik, S. N., and Dalai, A. K., "Catalytic Hydrogenolysis of Glycerol to Propylene Glycol over Mixed Oxides Derived from a Hydrotalcite-Type Precursos," Ind. Eng. Chem. Res., 48, 1840-1846 (2009). https://doi.org/10.1021/ie8011424
  4. Wang, S., and Liu, H., "Selective Hydrogenolysis of Glycerol to Propylene Glycol on Cu-ZnO Catalysts," Catal. Lett., 117, 62-67 (2007). https://doi.org/10.1007/s10562-007-9106-9
  5. Perosa, A., and Tundo, P., "Selective Hydrogenolysis of Glycerol with Raney Nickel," Ind. Eng. Chem. Res., 44, 8535-8537 (2005). https://doi.org/10.1021/ie0489251
  6. Lahr, D. G., and Shanks, B. H., "Effect of Sulfur and Temperature on Ruthnium-Catalyzed Glycerol Hydrogenolysis to Glycols," J. Catal., 232, 386-394 (2005). https://doi.org/10.1016/j.jcat.2005.03.015
  7. Maris, E. P., and Davis, R. J., "Hydrogenolysis of Glycerol over Carbon-Supported Ru and Pt Catalysts," J. Catal., 249, 328-337 (2007). https://doi.org/10.1016/j.jcat.2007.05.008
  8. Dosari, M. A., Kiatsimkul, P. P., Sutterlin, W. R., and Suppes, G. J., "Low Pressure Hydrogenolysis of Glycerol to Propylene Glycol,," Appl. Catal. A, 281, 225-231 (2005). https://doi.org/10.1016/j.apcata.2004.11.033
  9. Furikado, I., Miyazawa, T., Koso, S., Shimao, A., Kunimori, K., and Tomishige, K., "Catalytic Performance of Rh/$SiO_2$ in Glycerol Reaction under Hydrogen," Green Chem., 9, 582-588 (2007). https://doi.org/10.1039/b614253b
  10. Gervasini, A., and Bennici, S., "Dispersion and Surface States of Copper Catalysts by Temperature-Programmed-Reduction of Oxidized Surfaces (s-TPR)," Appl. Catal. A., 281, 199-205 (2005). https://doi.org/10.1016/j.apcata.2004.11.030
  11. Jung, W. Y., and Hong, S. S., "Synthesis of $LaCoO_2$ Nanoparticles by Microwave Process and their Photocatalytic Activity under Visible Light Irradiation," J. Ind. Eng. Chem. 19, 157-160 (2013). https://doi.org/10.1016/j.jiec.2012.07.018
  12. Miyazawa, T., Kusunoki, Y., Kunimori, K., and Tomishige, K., "Glycerol Conversion in the Aqueous Solution under Hydrogen over Ru/C+ an Ion-Exchange Resin and Their Reaction Mechanism," J. Catal., 240, 213-221 (2006). https://doi.org/10.1016/j.jcat.2006.03.023