Browse > Article
http://dx.doi.org/10.9713/kcer.2022.60.1.159

Catalytic Ammonia Decomposition on Nitridation-Treated Catalyst of Mo-Al Mixed Oxide  

Baek, Seo-Hyeon (Department of Chemical Engineering, Chungbuk National University)
Youn, Kyunghee (Department of Chemical Engineering, Chungbuk National University)
Shin, Chae-Ho (Department of Chemical Engineering, Chungbuk National University)
Publication Information
Korean Chemical Engineering Research / v.60, no.1, 2022 , pp. 159-168 More about this Journal
Abstract
Catalytic activity in ammonia decomposition reaction was studied on Mo-Al nitride obtained through temperature programmed nitridation of calcined Mo-Al mixed oxide prepared by varying the MoO3 quantity in the range of 10-50 wt%. N2 sorption analysis, X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS) and H2-temperature programmed reduction (H2-TPR), and transmission electron microscopy (TEM) to investigate the physicochemical properties of the prepared catalyst were performed. After calcination at 600 ℃, the XRD of Mo-Al oxide showed γ-Al2O3 and Al2(MoO4)3 phases, and the nitride after nitridation showed an amorphous form. The specific surface area after nitridation by topotactic transformation of MoO3 to nitride was increased due to the formation of Mo nitride, and the Mo nitride was observed to be supported on γ-Al2O3. As for the catalytic activity in the ammonia decomposition reaction, 40 wt% MoO3 showed the best activity, and as the nitridation time increases, the activity increased, and thus the activation energy decreased.
Keywords
$NH_3$ decomposition; Mo-Al mixed oxide; Mo nitride; $Al_2(MoO_4)_3$; Temperature programmed nitridation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lamb, K. E., Dolan, M. D., and Kennedy, D. F., "Ammonia for Hydrogen Storage; A Review of Catalytic Ammonia Decomposition and Hydrogen," Int. J. Hydrog. Energy, 44(7), 3580-3593(2019).   DOI
2 Maleki, H., Fulton, M. and Bertola, V., "Kinetic Assessment of H2 Production from NH3 Decomposition over CoCeAlO Catalyst in a Microreactor: Experiments and CFD Modelling,"Chem. Eng. J., 411, 128595(2021).   DOI
3 Zhang, X., Liu, L., Feng, J., Ju, X., Wang, J, He, T. and Chen, P., "Metal-support Interaction-modulated Catalytic Activity of Ru Nanoparticles on Sm2O3 for Efficient Ammonia Decomposition," Catal. Sci. Techn., 11, 2915-292321(2021).   DOI
4 Pinzon, M., Romero, A., de Lucas Consuegra, A., de la Osa, A. R. and Sanchez, P., "Hydrogen Production by Ammonia Decomposition over Ruthenium Supported on SiC Catalyst," J. Ind. Eng. Chem., 94, 326-335(2021),   DOI
5 Jolaoso, L. A., Zaman, S. F., Podila, S., H. Driss, H., Al-Zahrani, A. A., Daous, M. A. and Petrov, L., "Ammonia Decomposition over Citric Acid Induced γ-Mo2N and Co3Mo3N Catalysts," Int. J. Hydrog. Energy, 43, 4839-4844(2018).   DOI
6 Bell, T. E. and Torrente-Murciano, L., "H2 Production via Ammonia Decomposition Using Non-Noble Metal Catalysts: A Review," Top. Catal., 59, 1438-1457(2016).   DOI
7 Mukherjee, S., Devaguptapu, S. V., Sviripa, A., Carl R.F. Lund, C. R. F., and Wu, G., "Low-temperature Ammonia Decomposition Catalysts for Hydrogen Generation," Appl. Catal. B-Environ., 226, 162-181(2018).   DOI
8 Le, T. A., Do, Q. C., Kim, Y., Kim, T.-H., and Chae, H.-J., "A Review on the Recent Developments of Ruthenium and Nickel Catalysts for COx-free H2 Generation by Ammonia Decomposition," Korean J. Chem. Eng., 38(6), 1087-1103(2021).   DOI
9 Wang, Z., Qu, Y., Shen, X. and Cai, Z., "Ruthenium Catalyst Supported on Ba Modified ZrO2 for Ammonia Decomposition to COx-free Hydrogen," Int. J. Hydrog. Energy, 44, 7300-7307 (2019).   DOI
10 Podila, S., Zaman, S. F., Driss, H., Alhamed, Al-Zahranib, Y. A. and Petrov, L. A., "Hydrogen Production by Ammonia Decomposition Using High Surface Area Mo2N and Co3Mo3N Catalysts," Catal. Sci. Technol., 6, 1496-1506(2016).   DOI
11 Huo, L., Han, X., Zhang, L., Liu, B., Gao, R., Cao B., Wang, W.- W., Jia, C.-J., Liu, K., Liu, J. and Zhang, J., "Spatial Confinement and Electron Transfer Moderating Mo-N Bond Strength for Superior Ammonia Decomposition Catalysis," Appl. Catal. B-Environ., 294, 120254(2021).   DOI
12 Li, G., Kanezashi M. and Tsuru, T., "Catalytic Ammonia Decomposition over High-Performance Ru/Graphene Nanocomposites for Efficient COx-Free Hydrogen Production,"Catalysts, 7(1), 23(2017).   DOI
13 Tang, H., Wang, Y., Zhang, W. Liu, Z., Li, L., Han, W. and Li, Y., "Catalytic Activity of Ru Supported on SmCeOx for Ammonia Decomposition: The Effect of Sm Doping," J. Solid State Chem., 295, 121946(2021).   DOI
14 Baek, S.-H., Yun, K., Kang, D.-C., An, H., Park, M. B., Shin, C.- H. and Min, H.-K., "Characteristics of High Surface Area Molybdenum Nitride and Its Activity for the Catalytic Decomposition of Ammonia," Catalysts, 11(2), 192(2021).   DOI
15 Choi, J.-G., Brenner, J. R., Colling, C. W., Demczyk, B. G., Dunning, J. L. and Thomson, L. T., "Synthesis and Characterization of Molybdenum Nitride Hydrodenitrogenation Catalysts," Catal. Today, 15, 201-222(1992).   DOI
16 Bajus, S., Agel, F., Kusche, M., Bhriain, N. N. and Wasserscheid, P., "Alkali Hydroxide-modified Ru/γ-Al2O3 Catalysts for Ammonia Decomposition," Appl. Catal. A-Gen., 510, 189-195(2016).   DOI
17 Le, T. A., Kim, Y., Kim, J. W., Lee, S.-U., Kim, J.-R., Kim, T.- W., Lee, Y.-J. and Chae, H.-J., "Ru-supported Lanthania-ceria Composite as An Efficient Catalyst for COx-free H2 Production from Ammonia Decomposition," Appl. Catal. B-Environ., 285, 119831(2021).   DOI
18 Lorenzut, B., Montini, T., Bevilacqua, M. and Fornasiero, P., "FeMo-based Catalysts for H2 Production by NH3 Decomposition," Appl. Catal. B-Environ., 125, 409-417(2012).   DOI
19 Dewangan, K., Patil, S. S., Joag, D. S., More, M. A. and N. S. Gajbhiye, N. S., "Topotactical Nitridation of MoO3 Fibers to γ-Mo2N Fibers and Its Field Emission Properties," J. Phys. Chem. C, 114, 14710-14715(2010).   DOI
20 Srifa, A., Okura, K., Okanishi, T., Muroyama, H., Matsui, T. and Eguchi, K., "COx-free Hydrogen Production via Ammonia Decomposition over Molybdenum Nitride-based Catalysts," Catal. Sci. Technol., 6, 7495-7504(2016).   DOI
21 Colling, C. W., Choi, J.-G. and Thomson, L. T., "Molybdenum Nitride Catalysts II. H2 Temperature Programmed Reduction and NH3 Temperature Programmed Desorption," J. Catal., 160, 35-42(1996).   DOI
22 Colling, C. W. and Thomson, L. T., "The structure and Function of Supported Molybdenum Nitride Hydrodenitrogenation Catalysts," J. Catal., 146, 193-203(1994).   DOI
23 Hajduk, S., Dasireddy, V. D. B. C., Likozar, B., Drazic, G. and Orel Z. C., "COx-free Hydrogen Production via Decomposition of Ammonia over Cu-Zn-based Heterogeneous Catalysts and Their Activity/stability," Appl. Catal. B-Environ., 211, 57-67(2017).   DOI
24 Zhang, D., Liu, W.-Q., Liu, Y.-A., Etim, U. J., Liu, X.-M. and Yan, Z.-F., "Pore Confinement Effect of MoO3/Al2O3 Catalyst for Deep Hydrodesulfurization," Chem. Eng. J., 230, 706-717(2017).
25 Meng, D., Wang, B., Yu, W., Z. Li, Z. and Ma, X., "Effect of Citric Acid on MoO3/Al2O3 Catalysts for Sulfur Resistant Methanation," Catalysts, 7, 151(2017).   DOI
26 Taghili, N., Manteghian, M. and Jafar, A., "Novel Preparation of MoO3/γ-Al2O3 Nanocatalyst: Application, in Extra-heavy Oil Visbreaking at Atmospheric Pressure," Appl. Nanosci., 10, 1603-1613(2020).   DOI
27 Makepeace, J. W., Wood, T. J., Hunter, H. M. A., Jones, M. O. and David, W. I. F., "Ammonia Decomposition Catalysis Using Non-stoichiometric Lithium Imide," Chem. Sci., 6, 3805-3815 (2015).   DOI
28 Guo, J., Wang, P., Wu, G., Wu, A., Hu, D., Xiong, Z., Wang, Yu, J., P., Chang, F., Chen, Z. and Chen, P., "Lithium Imide Synergy With 3d Transition-metal Nitrides Leading to Unprecedented Catalytic Activities for Ammonia Decomposition," Angew. Chem.- Int. Edit., 54, 2950-2954(2015).   DOI
29 Giordano, N., Bart, J. C. T., Vaghi, A., Castelian, A. and Martinotti, G., "Structure and Catalytic Activity of MoO3.Al2O3 Systems I. Solid-State Properties of Oxidized Catalysts," J. Catal., 36 81-92(1975).   DOI
30 Groen, J. C., Peffer, L. A. A. and Perez-Ramirez, J., "Pore Size Determination in Modified Micro- and Mesoporous Materials. Pitfalls and Limitations in Gas Adsorption Data Analysis," Microp. Mesop. Mater., 60, 1-17(2003).   DOI
31 Huo, L., Liu, B., Li, H., Cao, B., Hu, X.-C., Fu, X.-P., Ji, C. and Zhang, J., "Component Synergy and Armor Protection Induced Superior Catalytic Activity and Stability of Ultrathin Co-Fe Spinel Nanosheets Confined in Mesoporous Silica Shells for Ammonia Decomposition Reaction," Appl. Catal. B-Environ., 253, 121-130 (2019).   DOI
32 Morlanes, N., Sayas, S. and Shterk, G., "Development of a Ba-CoCe Catalyst for the Efficient and Stable Decomposition of Ammonia," Catal. Sci. Techn., 11, 3014-3024 (2021).   DOI
33 Huang, C. Yu, Y., Tang, X., Liu Z., Zhang, J., Ye, C., Ye, Y. and Zhang, R., "Hydrogen Generation by Ammonia Decomposition over Co/CeO2 Catalyst: Influence of Support Morphologies," Appl. Surf. Sci., 5321, 147335(2020).
34 Mukherjee, S., Devaguptapu, S. V., Sviripa, A., Lund, C. R. F. and Wu, G., "Low-temperature Ammonia Decomposition Catalysts for Hydrogen Generation," Appl. Catal. B-Environ., 226, 162-181 (2018).   DOI
35 Chen, Y.-L., Juang, C.-J, and Chen, Y.-C., "The Effects of Promoter Cs Loading on the Hydrogen Production from Ammonia Decomposition Using Ru/C Catalyst in a Fixed-Bed Reactor," Catalysts, 11(3), 321(2021).   DOI
36 Nagaoka, K., Eboshi, T., Takeishi, Y., Tasaki, R., Honda, Imamura, K. and Sato, K., "Carbon-free H2 Production from Ammonia Triggered at Room Temperature with An Acidic RuO2/γ-Al2O3 Catalyst," Sci. Adv., 3, e1602747(2017).   DOI
37 Wang, Y., Kunz, M. R., Siebers, S., Rollins, H., Gleaves, J., Yablonsky, G. and Fushimi, R., "Transient Kinetic Experiments within the High Conversion Domain: The Case of Ammonia Decomposition," Catalysts, 9, 104(2019).   DOI
38 Fu, E., Qiu, Y., Lu, H., Wang, S., Liu, L., Feng, H., Yang, Y., Wu, Z., Xie, Y., Gong, F. and Xiao, R., "Enhanced NH3 Decomposition for H2 Production over Bimetallic M(M=Co, Fe, Cu)Ni/Al2O3," Fuel Proc. Tech., 221, 106945(2021).   DOI
39 Maleki, H., Fulton, M. and Bertola, V., "Kinetic Assessment of H2 Production from NH3 Decomposition over CoCeAlO Catalyst in a Microreactor: Experiments and CFD Modelling," Chem. Eng. J., 411, 128595(2021).   DOI
40 Schuth, F., Palkovits, R., Schlogl, R. and Su, D. S., "Ammonia as a Possible Element in An Energy Infrastructure: Catalysts for Ammonia Decomposition," Energy Environ. Sci., 5 6278-6289 (2012).   DOI
41 Lucentini, I., Colli, G. G., Luzi, C. D., Serrano, I., Martinez, O. M. and Llorca, J., "Catalytic Ammonia Decomposition over Ni-Ru Supported on CeO2 for Hydrogen Production: Effect of Metal Loading and Kinetic Analysis," Appl. Catal. B-Environ., 286, 119896(2021).   DOI
42 Feng, J., Liu, L., Ju, X., Wang, J., Zhang, X., He, T., and Chen, P., "Highly Dispersed Ruthenium Nanoparticles on Y2O3 as Superior Catalyst for Ammonia Decomposition," ChemCatChem, 13, 1552(2012).
43 Lucentini, I., Casanovas, A. and Llorca, J., "Catalytic Ammonia Decomposition for Hydrogen Production on Ni, Ru and Ni-Ru Supported on CeO2 ", Int. J. Hydrog. Energy, 44, 12693-12707(2019).   DOI