• 제목/요약/키워드: mixed boundary condition

검색결과 76건 처리시간 0.029초

EHL과 경계 윤활의 혼합 개념에 의한 캠과 종동물의 접촉 현상에 대한 연구 (Study of Cam and Follower Contacts with the Mixed Concepts of EHL and Boundary Lubrication)

  • 장시열
    • Tribology and Lubricants
    • /
    • 제15권4호
    • /
    • pp.343-353
    • /
    • 1999
  • The role of viscosity index improver's(Ⅶ) additives for modem engine lubrication is complex. Under the condition of atmosphere or low shear rate, the characteristics of Ⅶ added lubricant is verified and quoted frequently for mathematical model of lubricant behavior. However, recent research shows that added lubricant has the characteristics of shear thinning at high shear rate condition although it performs well enough over the whole range of working temperature. At high shear rate, they show significant decrease of apparent viscosity irrespective of temperature. Many experimental researches verify that Ⅶ added lubricant shows boundary film layer formation on the solid surface as well as shear thinning effect by its polymeric molecular characteristics. The intend of our research is to verify the effects of Ⅶ from the viewpoint of continuum mechanics, because conventional Reynolds'equation with only pressure-viscosity relation cannot fully predict the lubricant behavior under the Ⅶ added condition. In these aspects, Reynolds'equation of Newtonian fluid model lacks the reflection of real fluid behavior and there is no way to explain the non-linear characteristics of Ⅶ added lubricant. In this research, we mathematically modeled the Ⅶ added lubricant behaviors which are the characteristics of non-Newtonian fluid behavior at high shear rate and boundary film formation on the solid surface. The consideration of elastic deformation in the contact region is also included in our computation and finally the converged film pressure and the film thickness with elastic deformation are obtained. The results are compared with those of Newtonian fluid model.

An Immersed-Boundary Finite-Volume Method for Simulation of Heat Transfer in Complex Geometries

  • Kim, Jungwoo;Park, Haecheon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권6호
    • /
    • pp.1026-1035
    • /
    • 2004
  • An immersed boundary method for solving the Navier-Stokes and thermal energy equations is developed to compute the heat transfer over or inside the complex geometries in the Cartesian or cylindrical coordinates by introducing the momentum forcing, mass source/sink, and heat source/sink. The present method is based on the finite volume approach on a staggered mesh together with a fractional step method. The method of applying the momentum forcing and mass source/sink to satisfy the no-slip condition on the body surface is explained in detail in Kim, Kim and Choi (2001, Journal of Computational Physics). In this paper, the heat source/sink is introduced on the body surface or inside the body to satisfy the iso-thermal or iso-heat-flux condition on the immersed boundary. The present method is applied to three different problems : forced convection around a circular cylinder, mixed convection around a pair of circular cylinders, and forced convection around a main cylinder with a secondary small cylinder. The results show good agreements with those obtained by previous experiments and numerical simulations, verifying the accuracy of the present method.

자기동조 경계층 범위를 갖는 적응 슬라이딩모드 제어 (Adaptive sliding mode control with self-tuning the boundary layer thickness)

  • 박재삼
    • 제어로봇시스템학회논문지
    • /
    • 제6권1호
    • /
    • pp.8-14
    • /
    • 2000
  • In this paper, three adaptive sliding mode control algorithms, which self-tune both the sliding mode gain and the boundary layer thickness, are proposed. The first algorithm uses a gain adaptation rule is combined with the boundary layer thickness adaptatioin rule to satisfy the sliding condition. In the third algorithm, the computation burden of the second algorithm is reduced further, and therefore no extra cost is required for real-time implementation. Due to the mixed sliding mode gain and the boundary layer thickness adaptation scheme, the tracking error and the chattering of the control input can be reduced greatly.

  • PDF

혼합 체적-경계 적분방정식법을 이용한 탄성해석 방법 개발 (Development of an Elastic Analysis Technique Using the Mixed Volume and Boundary Integral Equation Method)

  • 이정기;허강일;진원재
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.775-786
    • /
    • 2002
  • A Mixed Volume and Boundary Integral Equation Method is applied for the effective analysis of elastic wave scattering problems and plane elastostatic problems in unbounded solids containing general anisotropic inclusions and voids or isotropic inclusions. It should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. This new method can also be applied to general two-dimensional elastodynamic and elastostatic problems with arbitrary shapes and number of anisotropic inclusions and voids or isotropic inclusions. In the formulation of this method, the continuity condition at each interface is automatically satisfied, and in contrast to finite element methods, where the full domain needs to be discretized, this method requires discretization of the inclusions only. Finally, this method takes full advantage of the pre- and post-processing capabilities developed in FEM and BIEM. Through the analysis of plane elastostatic problems in unbounded isotropic matrix with orthotropic inclusions and voids or isotropic inclusions, and the analysis of plane wave scattering problems in unbounded isotropic matrix with isotropic inclusions and voids, it will be established that this new method is very accurate and effective for solving plane wave scattering problems and plane elastic problems in unbounded solids containing general anisotropic inclusions and voids/cracks or isotropic inclusions.

이방성탄성문제의 혼합형변분원리 (A Mixed Variational Principle of Fully Anisotropic Linear Elasticity)

  • 홍순조
    • 전산구조공학
    • /
    • 제4권2호
    • /
    • pp.87-94
    • /
    • 1991
  • 본고에서는 Sandhu등에 의해 개발된 다변수경계치문제의 변분모델화 방법을 이용하여 범함수의 독립변수로써 변위와 응력을 동시에 포함하는 이방성탄성문제의 혼합형변분원리(Mixed Variational Principle)를 유도한다. 탄성방정식을 내적공간에서 self-adjoint한 미분연산자매트릭스 방정식으로 표시한 후 다변수 경계치문제의 변분이론을 적용하므로써 일반적 범함수가 구해지며, 이때에 지배방정식의 미분연산자와 경계조건식의 연산자의 일관성 (Consistency)을 유지하므로써 경계조건도 체계적으로 범함수내에 포함시킬 수 있다. 이 일반적 범함수에서 미분연산자의 self-adjointness성질을 이용하여 응력함수의 도함수를 제거하고 탄성방정식중 특정식이 항상, 정확히 만족된다고 가정하므로써 원하는 혼합형변분원리의 범함수를 유도할 수 있다. 여기에서 유도된 변분원리는 최근 Reissner에 의해 개발된 변분원리와 유사한 물리적 의미를 가지나 유도방법이 다를 뿐 아니라 일반적 이방성탄성체에 적용할 때 보다 편리한 형태로 된다. 이 혼합형변분원리는 다양하게 응용될 수 있으나, 복합재료적층판과 같은 이질성, 이방성 평판이론, 또는 쉘이론의 유도에 유용하게 사용할 수 있다.

  • PDF

구동장치 연동된 조종날개 혼합동강성 실험 및 특성보정 (Experiments of Mixed Dynamic Stiffness of a Control Fin and Actuator and Correction of Experiment Results)

  • 신영석;황철규;양해석;이열화
    • 한국군사과학기술학회지
    • /
    • 제7권4호
    • /
    • pp.107-113
    • /
    • 2004
  • In order to model a connection part between a control fin and actuator, the related characteristics of a dynamic stiffness were extracted from experiments. These characteristics include the static stiffness of a control fin and the dynamic stiffness of an actuator, so they are called the mixed dynamic stiffness here. This mixed dynamic stiffness is used as the boundary condition of a control fin connected to an actuator when the flutter characteristics are analyzed. The simulated stiffness of an actuator is corrected from the experiment results and the mixed dynamic is finally formulated in the domain of frequencies.

Computational Study of the Mixed Cooling Effects on the In-Vessel Retention of a Molten Pool in a Nuclear Reactor

  • Kim, Byung-Seok;Ahn, Kwang-Il;Sohn, Chang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제18권6호
    • /
    • pp.990-1001
    • /
    • 2004
  • The retention of a molten pool vessel cooled by internal vessel reflooding and/or external vessel reactor cavity flooding has been considered as one of severe accident management strategies. The present numerical study investigates the effect of both internal and external vessel mixed cooling on an internally heated molten pool. The molten pool is confined in a hemispherical vessel with reference to the thermal behavior of the vessel wall. In this study, our numerical model used a scaled-down reactor vessel of a KSNP (Korea Standard Nuclear Power) reactor design of 1000 MWe (a Pressurized Water Reactor with a large and dry containment). Well-known temperature-dependent boiling heat transfer curves are applied to the internal and external vessel cooling boundaries. Radiative heat transfer has been considered in the case of dry internal vessel boundary condition. Computational results show that the external cooling vessel boundary conditions have better effectiveness than internal vessel cooling in the retention of the melt pool vessel failure.

TWO-LAYER MULTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD FOR 3D-PROBLEM

  • KIM, SANG-BAE
    • Journal of applied mathematics & informatics
    • /
    • 제34권5_6호
    • /
    • pp.383-395
    • /
    • 2016
  • The convergence rate of a numerical procedure based on Schwarz Alternating Method (SAM) for solving elliptic boundary value problems depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It has been observed that the Robin condition (mixed interface condition), controlled by a parameter, can optimize SAM's convergence rate. In [8], one formulated the twolayer multi-parameterized SAM and determined the optimal values of the multi-parameters to produce the best convergence rate for one-dimensional elliptic boundary value problems. Two-dimensional implementation was presented in [10]. In this paper, we present an implementation for threedimensional problem.

난류 경계층 유동에서 입자의 확산과 스핀의 영향 (Particle Dispersion and Effect of Spin in the Turbulent Boundary Layer Flow)

  • 김병구;이창훈
    • 대한기계학회논문집B
    • /
    • 제28권1호
    • /
    • pp.89-98
    • /
    • 2004
  • In this paper, we develope a dispersion model based on the Generalized Langevin Model. Thomson's well-mixed condition is the well known criterion to determine particle dispersion. But, it has 'non-uniqueness problem'. To resolve this, we adopt a turbulent model which is a new approach in this field of study. Our model was greatly simplified under the self-similarity condition, leaving model only two model constants $C_{0}$ and ${\gamma}$$_{5}$ that control the dispersion and spin which measures rotational property of the Lagrangian particle trajectory. We investigated the sign of spin as well as magnitude by using the Direct Numerical Simulation. Model calculations were performed on the neutrally stable boundary layer flow. We found that spin has weak effect on the particle dispersion but it shows the significant effect on the horizontal flux compared to the zero-spin model.

MULTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD FOR 3D-PROBLEM

  • Kim, Sang-Bae
    • Journal of applied mathematics & informatics
    • /
    • 제33권1_2호
    • /
    • pp.33-44
    • /
    • 2015
  • The convergence rate of a numerical procedure based on Schwarz Alternating Method(SAM) for solving elliptic boundary value problems depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It has been observed that the Robin condition (mixed interface condition), controlled by a parameter, can optimize SAM's convergence rate. In [7], one formulated the multi-parameterized SAM and determined the optimal values of the multi-parameters to produce the best convergence rate for one-dimensional elliptic boundary value problems. Two-dimensional implementation was presented in [8]. In this paper, we present an implementation for three-dimensional problem.