• Title/Summary/Keyword: mitochondrial lipids

Search Result 30, Processing Time 0.026 seconds

Effect of Ginseng Saponin on Alcohol Metabolism in the Animal Body (인삼사포닌이 동물생체의 주정대사에 미치는 영향)

  • Joo, Chung-No
    • Journal of Ginseng Research
    • /
    • v.16 no.3
    • /
    • pp.222-227
    • /
    • 1992
  • Unlike carbohydrats and fats, alcohol is essentially foreign to the body and it is known that the body get rid of it by oxidizing alcohol maily in the liver. Acetaldehyde is produced during ethanol metabolism and is known to be oxidized mainly by aldehyde dehydrogenase (ALDH). ALDH activity was found mainly in the mitochondrial fraction but a significant ALDH activity was also present in microsomal and cytosol fraction. Wistar rats (150~200 g, male) were given freely with 12% ethanol (Control) and/or 12% ethanol containing 0.1% ginseng saponins (Test) instead of water for 6 days and the liver was analyzed. ALDH activities of both control and test group were lower than that of normal group but test AkDH was less inhibited than control. ADH activies of both control and test were slightly higher than that of normal group but our previous data showed that it became gradually steady after prolonged ethanol feeding. MEOS activities of both control and test group were much higher than that of normal group. MEOS enzymes are inducible but the activity of test group was greatly higher than that of control. Ethanol containing [1-i4C] ethanol (5 $\mu$Ci) was injected to the above three groups and 30 min later, the distribution of radioactivity of hepatic lipids was investigated. Radioactivities of hepatic lipids of both control and test group were higher than that of normal group, however, that of test group was much lower than that of control. Analysis of individual lipids showed that phospholipid biosynthesis was significantly impaired and fatty acid and triglycerides biosynthesis were greatly stimulated. However, it was realized that the saponin prevented phospholipid biosynthesis depression and the increase of triglyceride biosynthesis considerably. It seemed that the saponin might stimulate ADH, ALDH and MEOS and the acetaldehyde formed would be removed faster. The excess hydrogen can be shunt more quickly into lipid biosynthesis. Electron microscopic observation showed that the hepatic cell of control group was si gnificantly damaged. Mitochondria were swollen and rough endoplasmic reticulum were dilated, however, hepatocytes of test group were not damaged.

  • PDF

A novel approach for dietary regulation of macrophages through mitochondrial energy metabolism (식품을 이용한 대식세포 에너지 대사 조절)

  • Yu, Seungmin;Kim, Wooki
    • Food Science and Industry
    • /
    • v.55 no.3
    • /
    • pp.264-275
    • /
    • 2022
  • The regulation of macrophages is a major target for dietary immune modulation for their involvement in both innate and adoptive immune responses. Studies revealed that macrophages are unique in their plasticity to polarize into either inflammatory M1 subset or anti-inflammatory M2 cells. Recently, cellular energy metabolism including both glycolysis and oxidative phosphorylation is demonstrated to control macrophage dichotomy. In this review, the differential utilization of glucose, lipids, amino acids, and irons by M1 and M2 cells are discussed in detail. In addition, several dietary approaches for the alteration of inflammatory M1 cells to M2 phenotypes are reviewed for development of functional foods for immune regulation.

Niacinamide Protects Skin Cells from Oxidative Stress Induced by Particulate Matter

  • Zhen, Ao Xuan;Piao, Mei Jing;Kang, Kyoung Ah;Fernando, Pincha Devage Sameera Madushan;Kang, Hee Kyoung;Koh, Young Sang;Yi, Joo Mi;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.562-569
    • /
    • 2019
  • Niacinamide (NIA) is a water-soluble vitamin that is widely used in the treatment of skin diseases. Moreover, NIA displays antioxidant effects and helps repair damaged DNA. Recent studies showed that particulate matter 2.5 ($PM_{2.5}$) induced reactive oxygen species (ROS), causing disruption of DNA, lipids, and protein, mitochondrial depolarization, and apoptosis of skin keratinocytes. Here, we investigated the protective effects of NIA on $PM_{2.5}$-induced oxidative stress in human HaCaT keratinocytes. We found that NIA could inhibit the ROS generation induced by $PM_{2.5}$, as well block the $PM_{2.5}$-induced oxidation of molecules, such as lipids, proteins, and DNA. Furthermore, NIA alleviated $PM_{2.5}$-induced accumulation of cellular $Ca^{2+}$, which caused cell membrane depolarization and apoptosis, and reduced the number of apoptotic cells. Collectively, the findings show that NIA can protect keratinocytes from $PM_{2.5}$-induced oxidative stress and cell damage.

Effect of Chronic Alcohol Feeding and 2-Acetylaminofluorene Treatment on Hepatic Mitochondrial ATPase Activity and Membrane Lipid Composition in Rats (만성 알코올 섭취시 2-Acetylaminofluorene 투여가 흰쥐 간 미토콘드리아 ATPase 활성도와 막지질 조성에 미치는 영향)

  • 김정희;류선영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.6
    • /
    • pp.867-873
    • /
    • 1995
  • This study was done ot investigate the effect of chronic alcohol feeding and acetylaminofluorene(2-AAF) treatment on hepatic mitochondrial ATPase activity andmembrane lipid composition. Male Sprague-Dawley rats, weighing 120~125g, were fed for 6 weeks on a liquid diet containing 35% of calories as ethanol. After 4 weeks of experiment diet feeding, 2-AAF(100mg/kg body weight) was injected twice a week intraperitoneally. Body weight and percent liver weight per body weight were significantly changed by ethanol feeding. Hepatic mitochondrial ATPase activity significantly decreased by ethanol feedings but not by 2-AAF treatment. In comparison to control, the ATPase activity of ethanol-AAF group decreased 29.3%. Since phospholipid(PL) content of mitochondria has an interaction effect between ethanol and 2-AAF treatment, 2-AAF treatment significantly increased phospholipid content in only ethanol fed group. Total cholesterol(C) level of mitochondria significantly increased by ethanol feeding. Consequently C/PL ratio of ethanol group was significantly higher than that of control group. The analysis of mitochondrial PL composition showed that cardiolipin(CL) significantly increased by 2-AFF treatment in control group. Phosphatidyl choline(PC) significantly increased by ethanol feeding, whereas PC significanlty decreased and phosphatidyl ethanolamine(PE) significantly increased by 2-AAF treatment. 2-AAF treatment also showed a significant increase in PE/PC ratio. Fatty acid patterns of mitochondria were also changed by either ethanol or 2-AAF although the severity of the changes was not great. These data suggest that the reduced mitochondrial ATPase activity in ethanol-AAF group may be a consequence of a changes in mitochondrial membrane lipid composition such as PE/PC ratio, C/PL ration and fatty acid patterns.

  • PDF

Vitamin B6 Deficiency, Genome Instability and Cancer

  • Wu, Xia-Yu;Lu, Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5333-5338
    • /
    • 2012
  • Vitamin B6 functions as a coenzyme in >140 enzymatic reactions involved in the metabolism of amino acids, carbohydrates, neurotransmitters, and lipids. It comprises a group of three related 3-hydroxy-2-methyl-pyrimidine derivatives: pyridoxine (PN), pyridoxal (PL), pyridoxamine (PM) and their phosphorylated derivatives [pyridoxal 5'-phosphate (PLP) and pyridoxamine 5'-phosphate (PMP)], In the folate metabolism pathway, PLP is a cofactor for the mitochondrial and cytoplasmic isozymes of serine hydroxymethyltransferase (SHMT2 and SHMT1), the P-protein of the glycine cleavage system, cystathionine ${\beta}$-synthase (CBS) and ${\gamma}$-cystathionase, and betaine hydroxymethyltransferase (BHMT), all of which contribute to homocysteine metabolism either through folate-mediated one-carbon metabolism or the transsulfuration pathway. Folate cofactors carry and chemically activate single carbons for the synthesis of purines, thymidylate and methionine. So the evidence indicates that vitamin B6 plays an important role in maintenance of the genome, epigenetic stability and homocysteine metabolism. This article focuses on studies of strand breaks, micronuclei, or chromosomal aberrations regarding protective effects of vitamin B6, and probes whether it is folate-mediated one-carbon metabolism or the transsulfuration pathway for vitamin B6 which plays critical roles in prevention of cancer and cardiovascular disease.

Galangin (3,5,7-Trihydroxyflavone) Shields Human Keratinocytes from Ultraviolet B-Induced Oxidative Stress

  • Madduma Hewage, Susara Ruwan Kumara;Piao, Mei Jing;Kim, Ki Cheon;Cha, Ji Won;Han, Xia;Choi, Yung Hyun;Chae, Sungwook;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.165-173
    • /
    • 2015
  • Most skin damage caused by ultraviolet B (UVB) radiation is owing to the generation of reactive oxygen species. Phytochemicals can act as antioxidants against UVB-induced oxidative stress. This study investigated the protective effects of the flavone galangin against UVB-induced oxidative damage in human keratinocytes. Galangin efficiently scavenged free radicals and reduced UVB-induced damage to cellular macromolecules, such as DNA, lipids, and proteins. Furthermore, galangin rescued cells undergoing apoptosis induced by UVB radiation via recovering mitochondrial polarization and down-regulating apoptotic proteins. These results showed that galangin protects human keratinocytes against UVB radiation-induced cellular damage and apoptosis via its antioxidant effects.

Adenosine monophosphate-activated protein kinase in diabetic nephropathy

  • Kim, Yaeni;Park, Cheol Whee
    • Kidney Research and Clinical Practice
    • /
    • v.35 no.2
    • /
    • pp.69-77
    • /
    • 2016
  • Diabetic nephropathy (DN) is the leading cause of end-stage renal disease, and its pathogenesis is complex and has not yet been fully elucidated. Abnormal glucose and lipid metabolism is key to understanding the pathogenesis of DN, which can develop in both type 1 and type 2 diabetes. A hallmark of this disease is the accumulation of glucose and lipids in renal cells, resulting in oxidative and endoplasmic reticulum stress, intracellular hypoxia, and inflammation, eventually leading to glomerulosclerosis and interstitial fibrosis. There is a growing body of evidence demonstrating that dysregulation of 50 adenosine monophosphate-activated protein kinase (AMPK), an enzyme that plays a principal role in cell growth and cellular energy homeostasis, in relevant tissues is a key component of the development of metabolic syndrome and type 2 diabetes mellitus; thus, targeting this enzyme may ameliorate some pathologic features of this disease. AMPK regulates the coordination of anabolic processes, with its activation proven to improve glucose and lipid homeostasis in insulin-resistant animal models, as well as demonstrating mitochondrial biogenesis and antitumor activity. In this review, we discuss new findings regarding the role of AMPK in the pathogenesis of DN and offer suggestions for feasible clinical use and future studies of the role of AMPK activators in this disorder.

Fuctional Relationship between Rate of Fatty Acid Oxidation and Carnitine Palmitoyl Transferase I Activity in Various Rat Tissues

  • Cho, Yu-Lee;Do, Kyung-Oh;Kwon, Tae-Dong;Jang, Eung-Chan;Lee, Keun-Mi;Lee, Suck-Kang;Kim, Jong-Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.207-210
    • /
    • 2003
  • Lipids play many structural and metabolic roles, and dietary fat has great impact on metabolism and health. Fatty acid oxidation rate is dependent on tissue types. However there has been no report on the relationship between the rate of fatty acid oxidation and carnitine transport system in outer mitochondrial membrane of many tissues. In this study, the rate of fatty acid oxidation and carnitine palmitoyltransferase (CPT) I activity in the carnitine transport system were measured to understand the metabolic characteristics of fatty acid in various tissues. Palmitic acid oxidation rate and CPT I activity in various tissues were measured. Tissues were obtained from the white and red skeletal muscles, heart, liver, kidney and brain of rats. The highest lipid oxidation rate was demonstrated in the cardiac muscle, and the lowest oxidation rate was in brain. Red gastrocnemius muscle followed to the cardiac muscle. Lipid oxidation rates of kidney, white gastrocnemius muscle and liver were similar, ranging from 101 to 126 DPM/mg/hr. CPT I activity in the cardiac muscle was the highest, red gastrocnemius muscle followed by liver. Brain tissue showed the lowest CPT I activity as well as lipid oxidation rate, although the values were not significantly different from those of kidney and white gastrocnemius muscle. Therefore, lipid oxidation rate was highly (p<0.001) related to CPT I activity. Lipid oxidation rate is variable, depending on tissue types, and is highly (p<0.001) related to CPT I activity. CPT I activity may be a good marker to indicate lipid oxidation capacity in various tissues.

Effects of Dietary Levan on Adiposity, Serum Leptin and UCP Expression in Obese Rats Fed High Fat Diet (고지방 식이로 유도된 비만쥐에서 식이 레반이 체지방 형성 및 혈청 렙틴과 UCP 발현에 미치는 영향)

  • 강순아;홍경희;김소혜;장기효;김철호;조여원
    • Journal of Nutrition and Health
    • /
    • v.35 no.9
    • /
    • pp.903-911
    • /
    • 2002
  • The effects of dietary levan, high-molecular-weight $\beta$-2,6-linked fructose polymer, on adiposity, serum leptin and UCP expression in rats fed high fat diet were studied. The adipose tissue hormone, leptin has been proposed to be involved in the regulation of food intake and energy expenditure. Uncoupling protein (UCP), a mitochondrial protein that uncouples the respiratory chain from oxidative phosphorylation, generates heat instead of ATP, thereby increase energy expenditure. To determine whether the dietary levan may have the anti-obesity effect, 4 wk old Sprague Dawley male rats fed high fat diet for 6 wks to induce obesity, and subsequently fed one of three diets for further 6 wks: 1) high fat (40% of calories) diet without levan 2) with 3% (w/w) levan 3) with 5% levan. For the comparison, control group fed AIN-76A diet. Visceral and peritoneal fat masses were lower in high fat diet with levan groups compared to high fat diet group. The effect of levan was dose-dependent. Adipocyte size was significantly reduced in the levan diet groups compared to the no levan diet group. Serum cholesterol level was not affected by levan containing diet, while the serum HDL cholesterol level was higher in leven diet groups. In addition, serum triglyceride level was markedly reduced by levan containing diet, thus lower than that of control group. Serum leptin was reduced by levan containing diet and lower in 5% levan group compared to 3% levan group (p < 0.001), as a result, serum leptin and insulin levels of 5% levan group were reduced to level of control group. Futhermore, the serum leptin level reflected the adiposity. The expression of UCP 1, and UCP 2 in brown adipose tissue was up-regulated by levan containing diet. In conclusions, levan containing diet reduced adiposity and serum triglyceride but increased UCP expression in the obese rats fed high fat diet. (Korean J Nutrition 35(9) : 903~911, 2002)

Effects of Castration on Expression of Lipid Metabolism Genes in the Liver of Korean Cattle

  • Baik, Myunggi;Nguyen, Trang Hoa;Jeong, Jin Young;Piao, Min Yu;Kang, Hyeok Joong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.1
    • /
    • pp.127-134
    • /
    • 2015
  • Castration induces the accumulation of body fat and deposition of intramuscular fat in Korean cattle, resulting in improved beef quality. However, little is known about the metabolic adaptations in the liver following castration. To understand changes in lipid metabolism following castration, hepatic expression levels of lipid metabolism genes were compared between Korean bulls and steers. Steers had higher (p<0.001) hepatic lipids contents and higher (p<0.01) mRNA levels of lipogenic acetyl-CoA carboxylase. This differential gene expression may, in part, contribute to increased hepatic lipid content following the castration of bulls. However, we found no differences in the hepatic expression levels of genes related to triglyceride synthesis (mitochondrial glycerol-3-phosphate acyltransferase, diacylglycerol O-acyltransferase 1 and 2) and fatty acid (FA) oxidation (carnitine palmitoyltransferase 1A, C-4 to C-12 straight chain acyl-CoA dehydrogenase, very long chain acyl-CoA dehydrogenase) between bulls and steers. No differences in gene expression for very-low-density lipoprotein (VLDL) secretion, including apolipoprotein B mRNA and microsomal triglyceride transfer protein (MTTP) protein, were observed in the liver although MTTP mRNA levels were higher in steers compared to bulls. In conclusion, FA synthesis may contribute to increased hepatic lipid deposition in steers following castration. However, hepatic lipid metabolism, including triglyceride synthesis, FA oxidation, and VLDL secretion, was not significantly altered by castration. Our results suggest that hepatic lipid metabolism does not significantly contribute to increased body fat deposition in steers following castration.