• 제목/요약/키워드: mitf

검색결과 195건 처리시간 0.03초

강활속단탕가미방(羌活續斷湯加味方)이 파골세포 분화 및 조골세포 활성에 미치는 영향 (Effects of Kanghwalsokdan-tang Gamibang Water Extract on Osteoclast Differentiation and Osteoblast Proliferation)

  • 정은혜;유동열
    • 대한한방부인과학회지
    • /
    • 제29권2호
    • /
    • pp.66-82
    • /
    • 2016
  • Objectives : This study was conducted to evaluate the effect of Kanghwalsokdan-tang Gamibang water extract (KSG) on osteoporosis. Methods : RANKL-stimulated RAW 264.7 was used to evaluate inhibitory effect of KSG osteoclast differentiation and gene expression. We counted TRAP (+) multinucleated cells and measured TRAP activity and mRNA expressions of osteoclastogenesis-related genes (NFATc1, MITF, JNK1, cathepsin K, MMP-9) to figure out the effect of KSG on osteoclast. Osteoblastogenesis was also determined in rat calvarial cell. Alkaline phosphatase (ALP) activity, bone matrix protein and collagen synthesis were measured by using murine calvarial cell. Results : KSG inhibited the differentiation of osteoclast precursor cell and expression of genes related osteoclastogenesis like NAFTc1, MITF, c-fos, JNK1, Cathepsin K, MMP-9 and TRAP. KSG increased cell division and function of osteoblast separated from the skull of a rat and ALP synthesis, biosynthesis of bone matrix protein and collagen. Conclusions : Reviewing these results, KSG has efficacy on osteoclast inhibition and osteoblast activation. After further study, KSG will be able to apply for osteoporosis treatment and prevention.

적하수오(赤何首烏)의 멜라닌 생성 억제와 작용기전에 관한 연구 (Inhibitory Effect of Polygonum Multiflorum on Melanin Synthesis and Its Action Mechanism in B16F10)

  • 송종석;유동열
    • 대한한방부인과학회지
    • /
    • 제21권2호
    • /
    • pp.59-75
    • /
    • 2008
  • Purpose: This study was performed to determine the inhibitory effect of Polygonum multiflorum(PM) on melanin synthesis in B16F10. Methods: The Inhibitory effects of Polygonum multiflorum(PM) on melanin synthesis were determined by in-vitro assay. To elucidate inhibitory effects of Polygonum multiflorum on melanin synthesis, we determined the melanin release and melanin production in B16F10. And to investigate the action mechanism, we assessed the gene expression of tyrosinase, TRP-1, TRP-2, MMP-2, PKA, PKC, ERK-1 ERK-2, AKT-1, MITF in B16F10. Results: 1. PM inhibited melanin-release, melanin production in B16F10. 2. PM inhibited tyrosinase activity in vitro and in B16F10. 3. PM suppressed the expression of tyrosinase, TRP-1 in B16F10. 4. PM suppressed the expression of PKA in B16F10. 5. PM suppressed the expression of ERK-1, ERK-2, AKT-1 in B16F10. 6. PM suppressed the expression of MITF in B16F10. Conclusion: From these results, it may be concluded that PM possesses the antimelanogenetic effects.

  • PDF

만형자 용매 분획물의 미백 개선 효과 (Whitening Effects of Solvent Fractions Isolated from Vitex rotundifolia)

  • 유재묘;김동희;손준호
    • Journal of Applied Biological Chemistry
    • /
    • 제58권3호
    • /
    • pp.266-271
    • /
    • 2015
  • 최근에는 hyper-pigmentation에 대한 제품 개발을 위해 melanogenesis의 경로에 대한 이해를 위해 많은 노력을 하고 있다. 이에 따라 본 연구에서는 만형자(Vitex rotundifolia)의 depigmentation에 대한 효과를 조사하였다. B16F10 mouse melanoma cell을 이용하여 tyrosinase, MITF, TRP-1, TRP-2 그리고 melanin synthesis의 저해를 확인하였고, 만형자 ethyl acetate 분획물(VR-EA)을 처리하였을 때 농도의존적으로 감소한다는 것을 알 수 있었다. 특히, VR-EA는 tyrosinase와 TRP-1의 경우 각각 53.2, 88.4%의 저해율을 보여 미백에 있어서 효과적인 활성을 보여주었다. 따라서 만형자는 melanin synthesis를 효과적으로 막아주어 미백소재로서 활용 가능성이 충분하다고 사료된다.

Scopoletin from Cirsium setidens Increases Melanin Synthesis via CREB Phosphorylation in B16F10 Cells

  • Ahn, Mi-Ja;Hur, Sun-Jung;Kim, Eun-Hyun;Lee, Seung Hoon;Shin, Jun Seob;Kim, Myo-Kyoung;Uchizono, James A.;Whang, Wan-Kyunn;Kim, Dong-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권4호
    • /
    • pp.307-311
    • /
    • 2014
  • In this study, we isolated scopoletin from Cirsium setidens Nakai (Compositae) and tested its effects on melanogenesis. Scopoletin was not toxic to cells at concentrations less than $50{\mu}M$ and increased melanin synthesis in a dose-dependent manner. As melanin synthesis increased, scopoletin stimulated the total tyrosinase activity, the rate-limiting enzyme of melanogenesis. In a cell-free system, however, scopoletin did not increase tyrosinase activity, indicating that scopoletin is not a direct activator of tyrosinase. Furthermore, Western blot analysis showed that scopoletin stimulated the production of microphthalmia-associated transcription factor (MITF) and tyrosinase expression via cAMP response element-binding protein (CREB) phosphorylation in a dose-dependent manner. Based on these results, preclinical and clinical studies are needed to assess the use of scopoletin for the treatment of vitiligo.

혈부축어탕이 파골세포 분화 및 골흡수에 미치는 영향 (Effects of Hyeolbuchugeo-tang on Osteoclast Differentiation and Bone Resorption)

  • 장새별;유동열;유정은
    • 대한한방부인과학회지
    • /
    • 제30권4호
    • /
    • pp.1-17
    • /
    • 2017
  • Objectives: This study was conducted to evaluate the effects of Hyeolbuchugeo-tang (HBC) on Osteoporosis. Methods: We induced RAW 264.7 cells to differentiate to Osteoclasts by RANKL and treated RANKL-induced RAW 264.7 cells with HBC (0, 150, 350, $700{\mu}g/ml$). To measure osteoclast differentiation and activation, we counted TRAP (+) MNCs and measured mRNA expressions of its related genes (TRAP, MMP-9, cathepsin K, NFATc1, c-Fos, MITF, iNOS, COX-2, TNF-${\alpha}$) by RT-PCR. To assess bone resorption, the Bone pit formation were examined under a microscope. Results: HBC decreased TRAP (+) MNCs and inhibited mRNA expressions of TRAP, MMP-9, cathepsin K, NFATc1, c-Fos, MITF in osteoclast. And HBC inhibited Bone pit formation. Conclusions: HBC inhibited osteoclast differentiation and activation and bone resorption. Taken together, these results indicate that HBC might have potentials for prevention and treatment of Osteoporosis.

MiT Family Transcriptional Factors in Immune Cell Functions

  • Kim, Seongryong;Song, Hyun-Sup;Yu, Jihyun;Kim, You-Me
    • Molecules and Cells
    • /
    • 제44권5호
    • /
    • pp.342-355
    • /
    • 2021
  • The microphthalmia-associated transcription factor family (MiT family) proteins are evolutionarily conserved transcription factors that perform many essential biological functions. In mammals, the MiT family consists of MITF (microphthalmia-associated transcription factor or melanocyte-inducing transcription factor), TFEB (transcription factor EB), TFE3 (transcription factor E3), and TFEC (transcription factor EC). These transcriptional factors belong to the basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor family and bind the E-box DNA motifs in the promoter regions of target genes to enhance transcription. The best studied functions of MiT proteins include lysosome biogenesis and autophagy induction. In addition, they modulate cellular metabolism, mitochondria dynamics, and various stress responses. The control of nuclear localization via phosphorylation and dephosphorylation serves as the primary regulatory mechanism for MiT family proteins, and several kinases and phosphatases have been identified to directly determine the transcriptional activities of MiT proteins. In different immune cell types, each MiT family member is shown to play distinct or redundant roles and we expect that there is far more to learn about their functions and regulatory mechanisms in host defense and inflammatory responses.

거품돌산호 추출물의 멜라닌 합성 억제 효능 (Inhibitory Effects of Alveopora japonica Extract on Melanin Synthesis)

  • 심중현
    • 생약학회지
    • /
    • 제52권3호
    • /
    • pp.143-148
    • /
    • 2021
  • This study was performed to elucidate the inhibitory effects of Alveopora japonica extract on melanin synthesis by measuring the levels of cell viability, mRNA expression, tyrosinase activity, and melanin production in the B16F10 cell line. The effects of A. japonica extract on tyrosinase-related protein 1 (TYRP1), TYRP2, tyrosinase (TYR), and microphthalmia-associated transcription factor (MITF) mRNA expression levels and melanin content were determined. Quantitative real-time RT-PCR show that A. japonica extract decrease the mRNA expression levels of TYRP1, TYRP2, TYR, and MITF in B16F10 cell line, resulting in lower levels of melanin production compared to α-MSH-treated B16F10 cells. Tyrosinase activity assays reveal that A. japonica extract decrease melanin production in B16F10 cells. These results demonstrate the whitening effects of A. japonica extract on B16F10 cells; thus, A. japonica extract is a potent ingredient for skin whitening. Further research is needed on the mechanism of action of A. japonica extract. Such research will benefit not only cosmetics, but also the health food and medical industries.

B16F10 세포에서 Anthricin의 미백 효능 (Whitening Effects of Anthricin on B16F10 Cells)

  • 심중현
    • 생약학회지
    • /
    • 제52권1호
    • /
    • pp.13-18
    • /
    • 2021
  • This study was performed to clarify the whitening effects of anthricin on the B16F10 cell line. In order to elucidate the whitening effects of anthricin on the B16F10 cell line, cell viability, messenger ribonucleic acid (mRNA) expressions, tyrosinase activity assay, and melanin production assay were measured. The effects of anthricin on tyrosinase-related protein 1(TYRP1)/TYRP2/tyrosinase (TYR)/microphthalmia-associated transcription factor (MITF) mRNA expressions and melanin content were determined. Quantitative real-time RT-PCR showed that anthricin decreased the mRNA expression level of TYRP1/TYRP2/TYR/MITF genes and melanin production contents than α-MSH-treated B16F10 cells. The tyrosinase activity assay revealed that anthricin decreased the melanin production on the B16F10 cells. These data show that anthricin increases the whitening effects on the B16F10 cells; thus, anthricin is a potent ingredient for skin whitening. Thus, further research on the mechanism of action of anthricin for the development of not only cosmetics, but also healthy food and medicine should be investigated.

Linarin enhances melanogenesis in B16F10 cells via MAPK and PI3K/AKT signaling pathways

  • Oh, So-Yeon;Kang, Jin Kyu;Hyun, Chang-Gu
    • Journal of Applied Biological Chemistry
    • /
    • 제64권4호
    • /
    • pp.447-451
    • /
    • 2021
  • In this study, we discovered for the first time that linarin, a flavonoid compound, enhances melanin biosynthesis in B16F10 cells, and subsequently elucidated the underlying mechanism of linarin-induced melanogenesis. Linarin showed no cytotoxicity at a concentration of 42 μM and significantly increased intracellular tyrosinase activity and melanin content in B16F10 cells. Mechanistic analysis showed that linarin increased the expression of tyrosinase, tyrosinase-related protein 1 (TRP-1), and microphthalmia-associated transcription factor (MITF) that are related to melanogenesis. Moreover, linarin decreased the phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (AKT). Finally, we evaluated the effect of the structure-activity relationship of linarin and its aglycone on melanogenesis. The results indicated that linarin enhances the expression of melanogenic proteins by activating MITF expression via the modulation of mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K), and protein kinase B signaling pathways in B16F10 cells, thereby enhancing melanogenesis.

6,8-Diprenylorobol의 멜라닌 합성 억제 효능 (Inhibitory Effects of 6,8-diprenylorobol on Melanin Synthesis)

  • 심중현
    • 생약학회지
    • /
    • 제52권2호
    • /
    • pp.99-104
    • /
    • 2021
  • This study was performed to elucidated the inhibitory effects of 6,8-diprenylorobol on melanin synthesis by measuring the levels of cell viability, mRNA expression, tyrosinase activity, and melanin production in the B16F10 cell line. The effects of 6,8-diprenylorobol on tyrosinase-related protein 1 (TYRP1), TYRP2, tyrosinase (TYR), and microphthalmia-associated transcription factor (MITF) mRNA expression levels and melanin content were determined. Quantitative real-time RT-PCR shows that 6,8-diprenylorobol decreases the mRNA expression levels of TYRP1, TYRP2, TYR, and MITF in B16F10 cell line, resulting in lower levels of melanin production compared to α-MSH-treated B16F10 cells. Tyrosinase activity assays reveal that 6,8-diprenylorobol decreases melanin production in B16F10 cells. These results demonstrate the whitening effects of 6,8-diprenylorobol on B16F10 cells; thus, 6,8-diprenylorobol is a potent ingredient for skin whitening. Further research is needed on the mechanism of action of 6,8-diprenylorobol. Such research will benefit not only cosmetics, but also the health food and medical industries.