Browse > Article
http://dx.doi.org/10.22889/KJP.2021.52.2.99

Inhibitory Effects of 6,8-diprenylorobol on Melanin Synthesis  

Shim, Joong Hyun (Department of Cosmetic Science, Semyung University)
Publication Information
Korean Journal of Pharmacognosy / v.52, no.2, 2021 , pp. 99-104 More about this Journal
Abstract
This study was performed to elucidated the inhibitory effects of 6,8-diprenylorobol on melanin synthesis by measuring the levels of cell viability, mRNA expression, tyrosinase activity, and melanin production in the B16F10 cell line. The effects of 6,8-diprenylorobol on tyrosinase-related protein 1 (TYRP1), TYRP2, tyrosinase (TYR), and microphthalmia-associated transcription factor (MITF) mRNA expression levels and melanin content were determined. Quantitative real-time RT-PCR shows that 6,8-diprenylorobol decreases the mRNA expression levels of TYRP1, TYRP2, TYR, and MITF in B16F10 cell line, resulting in lower levels of melanin production compared to α-MSH-treated B16F10 cells. Tyrosinase activity assays reveal that 6,8-diprenylorobol decreases melanin production in B16F10 cells. These results demonstrate the whitening effects of 6,8-diprenylorobol on B16F10 cells; thus, 6,8-diprenylorobol is a potent ingredient for skin whitening. Further research is needed on the mechanism of action of 6,8-diprenylorobol. Such research will benefit not only cosmetics, but also the health food and medical industries.
Keywords
6,8-Diprenylorobol; Melanin; Tyrosinase; Microphthalmia-associated transcription factor;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Tomita, Y. and Seiji, M. (1977) Inactivation mechanism of tyrosinase in mouse melanoma. The Journal of Dermatology 4: 245-249.   DOI
2 Panzella, L., Ebato, A., Napolitano, A. and Koike, K. (2018) The late stages of melanogenesis: exploring the chemical facets and the application opportunities. International Journal of Molecular Sciences 19: 1753.   DOI
3 Talwar, H. S., Griffiths, C. E., Fisher, G. J., Hamilton, T. A. and Voorhees, J. J. (1995) Reduced type I and type III procollagens in photodamaged adult human skin. J. Invest. Dermatol. 105: 285-290.   DOI
4 Kirkwood, T. B. (2005) Understanding the odd science of aging. Cell 120: 437-447.   DOI
5 Jones, D. L. and Rando, T. A. (2011) Emerging models and paradigms for stem cell ageing. Nat. Cell Biol. 13: 506-512.   DOI
6 Kim, J., Lee, C. W., Kim, E. K., Lee, S. J., Park, N. H., Kim, H. S., Kim, H. K., Char, K., Jang, Y. P. and Kim, J. W. (2011) Inhibition effect of Gynura procumbens extract on UV-B-induced matrix-metalloproteinase expression in human dermal fibroblasts. J. Enthnopharmacol. 137: 427-433.   DOI
7 Gilchrest, B. A. and Eller, M. S. (1999) DNA photodamage stimulates melanogenesis and other photoprotective responses. J. Investig. Dermatol. Symp. Proc. 4: 35-40.   DOI
8 Uddin, G. M., Lee, H. J., Jeon, J, S., Chung, D, H. and Kim, C. Y. (2011) Isolation of prenylated isoflavonoids from Cudrania tricuspidata fruits that inhibit A2E photooxidation, Natural Product Sciences 17: 206-221.
9 Baek, Y. S., Ryu, Y. B., Curtis-Long, M. J., Ha, T. J., Rengasamy, R., Yang, M. S. and Park, K. H. (2009) Tyrosinase inhibitory effects of 1,3-diphenylpropanes from Broussonetia kazinoki. Bioorg. Med. Chem. 17: 35-41.   DOI
10 Bonaventure, J., Domingues, M. J. and Larue, L. (2013) Cellular and molecular mechanisms controlling the migration of melanocytes and melanoma cells. Pigment Cell Melanoma Res. 26: 316-325.   DOI
11 Sugumaran, M. (2002) Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigment Cell Res. 15: 2-9.   DOI
12 Ito, S. and Wakamatsu, K. (2003) Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res. 16: 523-531.   DOI
13 Kim, B. Y., Park, S. H., Park, B. J. and Kim, J. J. (2015) Whitening effect of Androsace umbellate extract, J. Soc. Cosmet. Scientists Korea 41: 21-26.   DOI
14 Yoon, Y. M., Bae, S. H., An, S. K., Choe, Y. B., Ahn, K. J. and An, I. S. (2013) Effects of ultraviolet radiation on the skin and skin cell signaling pathways. Kor. J. Aesthet. Cosmetol. 11: 417-426.
15 Kim, H. J., Seo, S. H., Lee, B. G. and Lee, Y. S. (2005) Identification of tyrosinase inhibitors from Glycyrrhiza uralensis. Planta Med. 71: 785-787.   DOI
16 Han, N. K., Park, C. M., Kwon, J. C., Joung, M. S. and Choi, J. W. (2014) Whitening effect of Fagopyrum tataricum extract, J. Soc. Cosmet. Scientists Korea 40: 179-186.   DOI
17 Hoang L. T. A., Do, T. T., Do, T. T., Bui, H. T., Nguyen, X. N., Pham, H. Y., Phan, V. K., Chau, V. M., Tran, M. D., Hee, K. K., Youn, C. K. and Kim, Y. H. (2017) Prenylated isoflavones from Cudrania tricuspidata inhibit NO production in RAW 264.7 macrophages and suppress HL-60 cells proliferation. J. Asian Nat. Prod. Res. 19: 510-518.   DOI
18 Toshio, F., Ai, M., Kiyoshi, K., Toshihisa, K., Sumio, T. and Taro, N. (2002) Anti-Helicobacter pylori flavonoids from licorice extract. Life Sci. 71: 1449-1463.   DOI
19 Shim, J. H. (2021) Whitening effects of anthricin on B16F10 cells. Kor. J. Pharmacogn. 52: 13-18.   DOI
20 Kim, D. W., Kwon, J. Y., Sim, S. J., Lee, D. H. and Mar, W. C. (2017) Orobol derivatives and extracts from Cudrania tricuspidata fruits protect against 6-hydroxydomamine-induced neuronal cell death by enhancing proteasome activity and the ubiquitin/proteasome-dependent degradation of α-synuclein and synphilin-1. J. Funct. Foods 29: 104-114.   DOI
21 Hosoi, J., Abe, E., Suda, T. and Kuroki, T. (1985) Regulation of melanin synthesis of B16 mouse melanoma cells by 1 alpha, 25-dihydroxyvitamin D3 and retinoic acid. Cancer Res. 45: 1474-1478.