• Title/Summary/Keyword: mission accuracy

Search Result 171, Processing Time 0.022 seconds

LTE-Cat.M1 Conformity Test in Sounding Rocket Communication Systems (Sounding Rocket 통신 시스템에서의 LTE-Cat.M1 사용 적합성 시험)

  • Seung-Hwan Lee;Tae-Hoon Kim;Hyemin Kim;Da Wan Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.589-594
    • /
    • 2024
  • In this paper, we introduce the results of the Sounding Rocket LTE communication test using the LTE-Cat.M1 module. The developed LTE data transmission/reception system consists of Mission-Mounted Equipment(Payload) and Ground Observation Equipment(GOE), and the delay rate was secured based on the time between data measured when received from the GOE by constantly transmitting data from the Payload at a speed of 10 Hz. In order to increase the accuracy of the actual flight test, ground network delay rate tests, hardware internal delay rate tests, and ground tests were performed. As a result of the flight test, it was confirmed that the handover failed in the upward phase and the communication was lost for 13 seconds, and then the parachute was deployed and the communication was reconnected in a situation with a constant positional displacement. LTE-Cat.M1 technology is expected to be utilized for descent phase observation missions or data backup during Sounding Rocket missions.

Research of Satellite Autonomous Navigation Using Star Sensor Algorithm (별 추적기 알고리즘을 활용한 위성 자율항법 연구)

  • Hyunseung Kim;Chul Hyun;Hojin Lee;Donggeon Kim
    • Journal of Space Technology and Applications
    • /
    • v.4 no.3
    • /
    • pp.232-243
    • /
    • 2024
  • In order to perform various missions in space, including planetary exploration, estimating the position of a satellite in orbit is a very important factor because it is directly related to the success rate of mission performance. As a study for autonomous satellite navigation, this study estimated the satellite's attitude and real time orbital position using a star sensor algorithm with two star trackers and earth sensor. To implement the star sensor algorithm, a simulator was constructed and the position error of the satellite estimated through the technique presented in the paper was analyzed. Due to lens distortion and errors in the center point finding algorithm, the average attitude estimation error was at the level of 2.6 rad in the roll direction. And the position error was confirmed by attitude error, so average error in altitude direction was 516 m. It is expected that the proposed satellite attitude and position estimation technique will contribute to analyzing star sensor performance and improving position estimation accuracy.

Positioning Accuracy Analysis of KOMPSAT-3 Satellite Imagery by RPC Adjustment (RPC 조정에 의한 KOMPSAT-3 위성영상의 위치결정 정확도 분석)

  • Lee, Hyoseong;Seo, Doochun;Ahn, Kiweon;Jeong, Dongjang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.503-509
    • /
    • 2013
  • The KOMPSAT-3 (Korea Multi-Purpose Satellite-3), was launched on May 18, 2012, is an optical high-resolution observation mission of the Korea Aerospace Research Institute and provides RPC(Rational Polynomial Coefficient) for ground coordinate determination. It is however need to adjust because RPC absorbs effects of interior-exterior orientation errors. In this study, to obtain the suitable adjustment parameters of the vendor-provided RPC of the KOMPSAT-3 images, six types of adjustment models were implemented. As results, the errors of two and six adjustment parameters differed approximately 0.1m. We thus propose the two parameters model, the number of control points are required the least, to adjust the KOMPSAT-3 R PC. According to the increasing the number of control points, RPC adjustment was performed. The proposed model with a control point particularly did not exceed a maximum error 3m. As demonstrated in this paper, the two parameters model can be applied in RPC adjustment of KOMPSAT-3 stereo image.

Identification of Differences between Importance and Performance of Forest Interpreter Training Programs using the IPA Method (IPA 기법을 활용한 숲해설가 직무교육프로그램에 대한 중요도와 성취도 차이분석)

  • Choi, Il-Sun;Ha, Si-Yeon;Son, Ji-Won
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.4
    • /
    • pp.679-686
    • /
    • 2014
  • This study analysed differences between importance and performance of 2014 forest interpreter training program through IPA with the aim to provide suggestions and improvement. First the results of a comparison of the overall average of performance and importance showed importance is higher than performance. Afterwards, the result of IPA showed that confidence of being an interpreter, active involvement, the understanding of the value of forest, expansion of the understanding of forest, the understanding of the mission of interpreter, and the understanding of the qualification of interpreter, those 6 items belong to the I quadrant. In the case of the II quadrant there were interest of the content of education and to learn a lot of things through education. Next, those how to deal with service, planning interpreter programs, clarity of the content of education, accuracy of the content of education, validity of the content of education, appropriate number of participants, and appropriate time of education involved in III quadrant. Finally, concentration in the education and the understanding of the topic of education situated in IV quadrant.

PASEM을 이용한 KSR-III Nose Fairing 분리운동 예측

  • Ok, Ho-Nam;Kim, In-Sun;Ra, Sung-Ho;Kim, Seong-Lyong;Oh, Beom-Suk
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.171-181
    • /
    • 2003
  • The nose fairings of KSR-III are designed to be separated from the rocket by explosive force at the mission altitude to expose the payload. Adequate amount of separation force should be imposed to allow safe separation without collision between the fairings and the rocket, and the separation device was designed for the separation at very high altitude where almost no air load was expected. As the development of KSR-III goes on, several design changes have made and lower separation altitude of 45km is expected as a result. Under these circumstances, it is required to determine if the nose fairings can be separated without collision with much severer air load than for the design condition. In this study, the 6-DOF motion analysis program, PASEM, which was developed to predict the strap-on booster separation, is modified to simulate the pivotal motion of the fairings at early stages of separation. The accuracy of pivot motion simulation is validated by comparison with the results of ground test and the accurate separation conditions are deduced from it. Trajectory simulations are performed to see if separation without collision is possible with varying angle of attack, direction of gravity, and the effect of gust. It is also found that reducing the separation angle of the clamshell hinge from 60 degrees to 40 degrees can enhance separation safety and separation at lower altitude of 40km can be done without collision.

  • PDF

Vibration Analysis of SAR Antenna Reflectors During Satellite Maneuver (위성 기동 시 SAR 안테나 반사판에 발생하는 진동 분석)

  • Kim, Tae-Hyun;Kim, Dae-Yeon;Suh, Jong-Eun;Han, Jae-Hung;Lee, Jae-Eun;Jung, Hwa-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.225-231
    • /
    • 2020
  • Recently, there has been an increasing demand for SAR satellite as it can be operated regardless of the weather condition. In general, main reflector of the SAR is formed of multiple deployable panels to increase performance in the constrained payload envelope. By nature, deployable structure lacks structural stiffness and it is vulnerable to external disturbances and excitation. In particular, SAR satellites may have high levels of vibration occurring at the antenna reflecting surface due to higher angular rate requirements. During image capturing it is important to keep high surface accuracy of the reflector for the quality of images. In this research, a performance degradation of deployable SAR antenna due to structural deformation is analyzed. Panels for main reflectors are assumed to be flexible structures and multi-body simulation environment is established. Then, deflection of the panel is calculated while the satellite performs maneuvers. In addition, antenna gain and beam pointing error are analyzed to determine how these deflections affect antenna performance and mission.

A study on the Improvement Method of the Report and Reward System on an Illegal Behavior of the Emergency Exit (비상구 불법행위 신고포상제도의 개선방안에 관한 연구)

  • Kim, Myeong Sik;Lee, Tae Shik;Cho, Won Cheol
    • Journal of Korean Society of Disaster and Security
    • /
    • v.5 no.2
    • /
    • pp.49-59
    • /
    • 2012
  • The safety management of the emergency exit, by directly related to the $civil^{\circ}$Øs dead in the fire situation, have limited by which the fire station take the on-side and control-centered way of business processing, it is expect to the effects in which the citizen have to concern and to take part. From 2010 years in the back-ground, it is operated nationally the report and reward system on an illegal behavior of the emergency exit, it is happened to the unfit operating situation in the mission and direction of the system up which the exit paparazzi act with intent to receive the reward payments. The study suggests solution through analyzing the illegal emergency exit operation result of sixteen counties and the Seoul metropolitan from year 2010 to 2011. Firstly, the report destination is adjusted to the multiple use establishments and the large-scale multiple use facilities over the limit level is limited under five times the report events of the same people in the minor endorsement. And the fine incomes should be invested to the disaster prevention acting related with the exit. Secondly, for upgrade of the report accuracy, a reporter is received the possible information for the confirmation of an illegal act, has become to lead the pre-monitoring act which the reporter is can to take the safety education and to guide the information about season and vulnerable business location. Finally, considering the support way about the encounter facility, the fire officer is not happen to occur the repetitive report in the same place, is related to the volunteer service system the report acts, consider as the volunteer service time, and must support them to act as the disaster prevention volunteer.

Precise Relative Positioning for Formation Flying Satellite using GPS Carrier-phase Measurements (GPS 반송파 위상을 사용한 편대비행위성 상대위치결정 연구)

  • Park, Jae-Ik;Lee, Eunsung;Heo, Moon-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1032-1039
    • /
    • 2012
  • The present paper deals with precise relative positioning of formation satellites with long baseline in low Earth orbit making use of L1/L2 dual frequency GPS carrier phase measurements. Kinematic approach means to describe the motion of objects without taking its mass/dynamics model into consideration. The advantage of the kinematic approach is that information about dynamics of the system is not applied, which gives more flexibility and could improve the scientific interest of the observations made by the mission. The ionosphere terms, which are not canceled by double differenced measurement equation in the case of the long baseline, are explicitly estimated as unknown parameters by extended Kalman filter. The estimated float ambiguities by EKF are solved by existing efficient integer vector search strategy under integer least square condition. For the integer vector search, we employ well known MLAMBDA. Finally, The feasibility and accuracy of processing scheme are demonstrated using the GPS measurements for two satellites in low Earth orbit separated by baselines of 100 km.

On characteristics of environmental correction factors in the South Indian Ocean by Topex/Poseidon satellite altimetric data (Topex/Poseidon 위성의 Altimeter자료를 이용한 남인도양의 환경보정인자 특성에 관한 연구)

  • 윤홍주;김영섭;이재철
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.2
    • /
    • pp.117-128
    • /
    • 1998
  • Topex/Poseidon satellite, launched in Auguest 1992, has provided more 5 years of very good quality data. Efficient improvements, either about instrumental accuracy or about sea level data correction, have been made so that Topex/Poseidon has become presently a wonderful tool for many researchers. The first mission data of 73 cycles, September 1992 - August 1994, was used to our study in order to know characteristics of environmental correction factors in the Amsterdam-Crozet-Kerguelen region of the South Indian Ocean. According to standard procedures as defined under user handbook for sea surface height data processes, then we have chosen cycles 43 as the cycle of reference because this cycle has provided the completed data for measurement points and has presented the exacted position of ground track compared to another cycles. It was computed variations of various factors for correction in ascending ground track 103(Amsterdam-Kerguelen continental plateau) and descending ground track170 (Crozet basin). Here the variations of ionosphere, dry troposphere, humid troposphere, electromagnetic bias, elastic tide and loading tide were generally very smaller as a few of cm, but the variations of oceanic tide(30-35cm) and inverted barometer(15-30cm) were higher than another factors. For the correction of ocean tide, our model(CEFMO: Code d' Elements Finis pour la Maree Oceanique) - This is hydrodynamic model that is very well applicated in all oceanic situations - was used because this model has especially good solution in the coastal and island area as the open sea area. Conclusionally, it should be understood that the variation of ocean free surface is mainly under the influence of tides(>80-90%) in the Amsterdam - Crozet- Kerguelen region of the South Indian Ocean.

Feasibility Study on the Methodology of Test and Evaluation for UAV Positioning (무인항공기 위치정확도 시험평가 기법 연구)

  • Ju, Yo-han;Moon, Kyung-kwan;Kang, Bong-seok;Jeong, Jae-won;Son, Han-gi;Cho, Jeong-hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.530-536
    • /
    • 2018
  • Recently, many studies for interoperability of UAV in the NAS has been performed since the application range and demand of UAV are continuously increased. For the interoperation of UAV in the NAS, technical standards and certification system for UAV which is equivalent to the commercial aircraft are required and test and evaluation methodology must be presented by standards. In this paper, qualification test and evaluation methodology aboutfor the UAV navigation system is proposed. For the research, the mission profile and operation environment of UAV were analyzed. Thereafter the test criteria were derived and the test methodology were established. Finally, the simulation and demonstration using test-bed UAV were performed. As a result of the test, it was confirmed that the navigation system of test UAV has a position accuracy about 1.4 meters at 95% confidence level in the entire flight stage.