DOI QR코드

DOI QR Code

Precise Relative Positioning for Formation Flying Satellite using GPS Carrier-phase Measurements

GPS 반송파 위상을 사용한 편대비행위성 상대위치결정 연구

  • Park, Jae-Ik (Satellite Navigation Team, Korea Aerospace Research Institute) ;
  • Lee, Eunsung (Satellite Navigation Team, Korea Aerospace Research Institute) ;
  • Heo, Moon-Beom (Satellite Navigation Team, Korea Aerospace Research Institute)
  • Received : 2012.09.26
  • Accepted : 2012.11.27
  • Published : 2012.12.01

Abstract

The present paper deals with precise relative positioning of formation satellites with long baseline in low Earth orbit making use of L1/L2 dual frequency GPS carrier phase measurements. Kinematic approach means to describe the motion of objects without taking its mass/dynamics model into consideration. The advantage of the kinematic approach is that information about dynamics of the system is not applied, which gives more flexibility and could improve the scientific interest of the observations made by the mission. The ionosphere terms, which are not canceled by double differenced measurement equation in the case of the long baseline, are explicitly estimated as unknown parameters by extended Kalman filter. The estimated float ambiguities by EKF are solved by existing efficient integer vector search strategy under integer least square condition. For the integer vector search, we employ well known MLAMBDA. Finally, The feasibility and accuracy of processing scheme are demonstrated using the GPS measurements for two satellites in low Earth orbit separated by baselines of 100 km.

이 논문에서는 GPS L1/L2 이중 주파수 반송파 위상 관측값을 사용하여 100km 이상의 장기선을 가지는 저궤도 편대비행위성의 상대위치결정 기법을 연구하였다. 더욱 다양한 응용분야로의 유연한 확장을 위해 위성의 동역학 모델을 고려하지 않았고 이중 주파수 GPS 관측값과 오차 모델링을 기반으로 확장칼만필터를 통해 구하고자 하는 미지의 변수를 추정하였다. 편대비행위성 간 기선의 증가로 인해 공통오차로 소거되지 않고 남아있는 전리층 지연 오차는 전리층 매핑 모델을 사용하여 계산하였다. 정수형 미지정수 검색은 정수 최소 자승 조건을 만족하는 미지정수를 보다 빠르고 효율적으로 검색할 수 있는 MLAMBDA 기법을 적용하였다. 결정된 정수형 미지정수의 검정은 비율 테스트를 통해 판정하였다. 제안된 기법의 검증을 위해 편대비행위성 간 상대 기선 거리가 100 km 이상 떨어져 있는 가상의 편대비행위성 시나리오를 구성하여 상대위치결정 정확도를 분석하였다. 분석된 결과를 통해 제안된 기법은 장기선에서의 반송파 위상 미지정수 결정과 mm 수준의 정밀한 상대위치결정이 가능함을 확인하였다.

Keywords

References

  1. J. I. Park et al, "Hardware-in-the-loop simulations of GPS-based navigation and control for satellite formation flying," Advances in Space Research, vol. 46, pp. 1451-1465, December 2010. DOI:10.1016/j.asr.2010.08.012
  2. S. Leung and O. Montenbruck, "Real-time navigation of formation-flying satellite using global positioning system measurements," J. Guid. Control Dyn., vol. 28, no.2, pp. 226-235, 2005. DOI:10.2514/1.7474
  3. O. Montenbruck et al, "A real-time kinematic GPS sensor for satellite relative navigation," Aerospace Science and Technology, vol.6, pp. 435-449, 2002. DOI:10.1016/S1270-9638(02)01185-9
  4. S. Mohiuddin and M. L. Psiaki, "Satellite relative navigation using carrier-phase differential GPS with Integer Ambiguities," Proc. of the AIAA Guidance, Navigation, and Control Conference, San Francisco, California, 2005.
  5. M. L. Psiaki and S. Mohiuddin, "Modeling, Analysis, and Simulation of GPS Carrier Phase for Spacecraft Relative Navigation," J. Guid. Control Dyn., vol. 30, no. 6, pp. 1628-1639, 2007. DOI:10.2514/1.29534
  6. U. Tancredi, A. Renga and M. Grassi, "GPS-based Relative Navigation of LEO formations with Varying Baselines," Proc. of the AIAA Guidance, Navigation, and Control Conference, Toronto, Canada, August, 2010.
  7. J. I. Park, E. S. Lee, and M. B. Heo, "GNSS based Relative Navigation of Formation Satellite with Long Baseline", Proc. of the 62nd International Astronautical Congress, Cape Town, SA, October 2011.
  8. G. Blewitt, "Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baseline up to 2000km," J. Geophysical Research, vol. 94, no. B8, August 1989. DOI:10.1029/JB094iB08p10187
  9. Y. Gao and Z. Li, "Cycle Slip Detection and Ambiguity Resolution Algorithms for Dual-Frequency GPS Data Processing," Marine Geodesy, vol. 22, no. 3, pp. 169-181, 1999. DOI:10.1080/014904199273443
  10. Colombo et al, "Resolving Carrier-phase Ambiguities On The Fly, At More Than 100 km from Nearest Reference Site, With the Help of Ionospheric Tomography," Proc. of the Institute of Navigation(ION GNSS 1999), Nashville, TN, September 1999.
  11. J. I. Park, E. S. Lee, and M. B. Heo, "Satellite Relative Navigation using Kinematic Approach", Proc. of the European Navigation Conference, April 2012.
  12. O. Montenbruck and E. Gill, "Ionospheric Correction for GPS Tracking of LEO Satellites," J. Navigation, vol. 55, pp. 293-304, 2002. DOI:10.1017/S0373463302001789
  13. P. Misra and P. Enge, Global Positioning System: Signals, Measurements, and Performance, 2nd Ed., Ganga-Jamuna Press, 2011
  14. B. P. Gibbs, Advanced Kalman Filtering, Least-Squares and Modeling : A Practical Handbook, A John Wiley & Sons, Inc., Publication, 2011
  15. T. Takasu and A. Yasuda, "Kalman-Filter-Based Integer Ambiguity Resolution Strategy for Long-Baseline RTK with Ionosphere and Troposphere Estimation," Proc. of the Institute of Navigation(ION GNSS 2010), Portland, Oregon, September 2010.
  16. P. J. G. Teunissen, "The least squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity rounding and bootstrapping," J. Geodesy, vol. 70, pp. 65-82, 1995. DOI:10.1007/BF00863419
  17. X. W. Chang, X. Yang and T. Zhou, "MLAMBDA: A modified LAMBDA method for integer least-squares estimation," J. Geodesy, vol. 79, 2005. DOI:10.1007/s00190-005-0004-x
  18. P. J. G. Teunissen and S. Verhagen, "On the Foundation of the Popular Ratio Test for GNSS Ambiguity Resolution," Proc. of the Institute of Navigation(ION GNSS 2004), Long Beach, CA, September 2004.
  19. P. J. G. Teunissen and S. Verhagen, "On GNSS Ambiguity Acceptance Tests," Proc. of the International Global Navigation Satellite Systems Symposium, The University of New South Wales, Sydney, Australia, December 2007.