• 제목/요약/키워드: missing values imputation

검색결과 82건 처리시간 0.022초

A Modified Grey-Based k-NN Approach for Treatment of Missing Value

  • Chun, Young-M.;Lee, Joon-W.;Chung, Sung-S.
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권2호
    • /
    • pp.421-436
    • /
    • 2006
  • Huang proposed a grey-based nearest neighbor approach to predict accurately missing attribute value in 2004. Our study proposes which way to decide the number of nearest neighbors using not only the deng's grey relational grade but also the wen's grey relational grade. Besides, our study uses not an arithmetic(unweighted) mean but a weighted one. Also, GRG is used by a weighted value when we impute missing values. There are four different methods - DU, DW, WU, WW. The performance of WW(Wen's GRG & weighted mean) method is the best of any other methods. It had been proven by Huang that his method was much better than mean imputation method and multiple imputation method. The performance of our study is far superior to that of Huang.

  • PDF

A Study on the Treatment of Missing Value using Grey Relational Grade and k-NN Approach

  • 천영민;정성석
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2006년도 PROCEEDINGS OF JOINT CONFERENCEOF KDISS AND KDAS
    • /
    • pp.55-62
    • /
    • 2006
  • Huang proposed a grey-based nearest neighbor approach to predict accurately missing attribute value in 2004. Our study proposes which way to decide the number of nearest neighbors using not only the dong's grey relational grade but also the wen's grey relational grade. Besides, our study uses not an arithmetic(unweighted) mean but a weighted one. Also, GRG is used by a weighted value when we impute a missing values. There are four different methods - DU, DW, WU, WW. The performance of WW(wen's GRG & weighted mean) method is the best of my other methods. It had been proven by Huang that his method was much better than mean imputation method and multiple imputation method. The performance of our study is far superior to that of Huang.

  • PDF

Comparison of EM with Jackknife Standard Errors and Multiple Imputation Standard Errors

  • Kang, Shin-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권4호
    • /
    • pp.1079-1086
    • /
    • 2005
  • Most discussions of single imputation methods and the EM algorithm concern point estimation of population quantities with missing values. A second concern is how to get standard errors of the point estimates obtained from the filled-in data by single imputation methods and EM algorithm. Now we focus on how to estimate standard errors with incorporating the additional uncertainty due to nonresponse. There are some approaches to account for the additional uncertainty. The general two possible approaches are considered. One is the jackknife method of resampling methods. The other is multiple imputation(MI). These two approaches are reviewed and compared through simulation studies.

  • PDF

NPR기반 누락 교통자료 추정기법 개발 및 적용 (Development and Application of Imputation Technique Based on NPR for Missing Traffic Data)

  • 장현호;한동희;이태경;이영인;원제무
    • 대한교통학회지
    • /
    • 제28권3호
    • /
    • pp.61-74
    • /
    • 2010
  • 지능형 교통체계는 실시간 교통자료를 수집하고 방대한 양의 이력자료를 축적한다. 그러나 방대한 이력자료는 효율적으로 관리/이용되지 않고 있는 실정이다. ADMS와 같은 자료관리시스템이 도입되면서, 이력자료의 잠재적 활용성은 급격히 증대되고 있다. 그러나 자료관리스템의 교통자료는 다량의 누락자료를 포함하고 있다. 누락자료는 장기간에 걸쳐 빈번하게 교통자료를 이용할 수 없게 하기 때문에, 이력자료를 활용하는데 있어 주된 장애요인 중 하나이다. 따라서 누락자료 추정기법은 자료관리시스템에서 주요한 역할을 수행하게 된다. 이러한 한계를 극복하기 위하여, 본 연구에서는 자료관리스템에 탑재가 용이하며 이력자료에 포함된 누락자료를 추정하기 위한 누락자료 추정모형을 개발하였다. 개발모형은 비모수회귀식(NPR)을 기반으로 개발되었으며, 이력자료의 다양한 교통자료 패턴을 이용하고 현실적인 요구사항(변수 최소화, 연산속도, 다양한 형태의 누락자료 보정, 다중대체)을 충족하도록 설계되었다. 모형의 평가는 다양한 누락자료 형태의 상태에서 수행되었으며, 자료관리시스템에 탑재되기 위해 요구되는 정확도, 연산 수행속도에서 기존에 보고된 모형보다 우수한 성능을 보였다.

Multiple imputation for competing risks survival data via pseudo-observations

  • Han, Seungbong;Andrei, Adin-Cristian;Tsui, Kam-Wah
    • Communications for Statistical Applications and Methods
    • /
    • 제25권4호
    • /
    • pp.385-396
    • /
    • 2018
  • Competing risks are commonly encountered in biomedical research. Regression models for competing risks data can be developed based on data routinely collected in hospitals or general practices. However, these data sets usually contain the covariate missing values. To overcome this problem, multiple imputation is often used to fit regression models under a MAR assumption. Here, we introduce a multivariate imputation in a chained equations algorithm to deal with competing risks survival data. Using pseudo-observations, we make use of the available outcome information by accommodating the competing risk structure. Lastly, we illustrate the practical advantages of our approach using simulations and two data examples from a coronary artery disease data and hepatocellular carcinoma data.

Cluster Analysis of Incomplete Microarray Data with Fuzzy Clustering

  • Kim, Dae-Won
    • 한국지능시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.397-402
    • /
    • 2007
  • In this paper, we present a method for clustering incomplete Microarray data using alternating optimization in which a prior imputation method is not required. To reduce the influence of imputation in preprocessing, we take an alternative optimization approach to find better estimates during iterative clustering process. This method improves the estimates of missing values by exploiting the cluster Information such as cluster centroids and all available non-missing values in each iteration. The clustering results of the proposed method are more significantly relevant to the biological gene annotations than those of other methods, indicating its effectiveness and potential for clustering incomplete gene expression data.

A Computational Intelligence Based Online Data Imputation Method: An Application For Banking

  • Nishanth, Kancherla Jonah;Ravi, Vadlamani
    • Journal of Information Processing Systems
    • /
    • 제9권4호
    • /
    • pp.633-650
    • /
    • 2013
  • All the imputation techniques proposed so far in literature for data imputation are offline techniques as they require a number of iterations to learn the characteristics of data during training and they also consume a lot of computational time. Hence, these techniques are not suitable for applications that require the imputation to be performed on demand and near real-time. The paper proposes a computational intelligence based architecture for online data imputation and extended versions of an existing offline data imputation method as well. The proposed online imputation technique has 2 stages. In stage 1, Evolving Clustering Method (ECM) is used to replace the missing values with cluster centers, as part of the local learning strategy. Stage 2 refines the resultant approximate values using a General Regression Neural Network (GRNN) as part of the global approximation strategy. We also propose extended versions of an existing offline imputation technique. The offline imputation techniques employ K-Means or K-Medoids and Multi Layer Perceptron (MLP)or GRNN in Stage-1and Stage-2respectively. Several experiments were conducted on 8benchmark datasets and 4 bank related datasets to assess the effectiveness of the proposed online and offline imputation techniques. In terms of Mean Absolute Percentage Error (MAPE), the results indicate that the difference between the proposed best offline imputation method viz., K-Medoids+GRNN and the proposed online imputation method viz., ECM+GRNN is statistically insignificant at a 1% level of significance. Consequently, the proposed online technique, being less expensive and faster, can be employed for imputation instead of the existing and proposed offline imputation techniques. This is the significant outcome of the study. Furthermore, GRNN in stage-2 uniformly reduced MAPE values in both offline and online imputation methods on all datasets.

Imputation of Missing values

  • 윤성철
    • 대한예방의학회:학술대회논문집
    • /
    • 대한예방의학회 2004년도 하계워크샵 및 전공의 연수교육 강의집
    • /
    • pp.1-11
    • /
    • 2004
  • PDF

Survival Analysis of Gastric Cancer Patients with Incomplete Data

  • Moghimbeigi, Abbas;Tapak, Lily;Roshanaei, Ghodaratolla;Mahjub, Hossein
    • Journal of Gastric Cancer
    • /
    • 제14권4호
    • /
    • pp.259-265
    • /
    • 2014
  • Purpose: Survival analysis of gastric cancer patients requires knowledge about factors that affect survival time. This paper attempted to analyze the survival of patients with incomplete registered data by using imputation methods. Materials and Methods: Three missing data imputation methods, including regression, expectation maximization algorithm, and multiple imputation (MI) using Monte Carlo Markov Chain methods, were applied to the data of cancer patients referred to the cancer institute at Imam Khomeini Hospital in Tehran in 2003 to 2008. The data included demographic variables, survival times, and censored variable of 471 patients with gastric cancer. After using imputation methods to account for missing covariate data, the data were analyzed using a Cox regression model and the results were compared. Results: The mean patient survival time after diagnosis was $49.1{\pm}4.4$ months. In the complete case analysis, which used information from 100 of the 471 patients, very wide and uninformative confidence intervals were obtained for the chemotherapy and surgery hazard ratios (HRs). However, after imputation, the maximum confidence interval widths for the chemotherapy and surgery HRs were 8.470 and 0.806, respectively. The minimum width corresponded with MI. Furthermore, the minimum Bayesian and Akaike information criteria values correlated with MI (-821.236 and -827.866, respectively). Conclusions: Missing value imputation increased the estimate precision and accuracy. In addition, MI yielded better results when compared with the expectation maximization algorithm and regression simple imputation methods.