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Cluster Analysis of Incomplete Microarray Data with Fuzzy Clustering
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Abstract

In this paper, we present a method for clustering incomplete Microarray data using alternating optimization in which a
prior imputation method is not required. To reduce the influence of imputation in preprocessing, we take an alternative
optimization approach to find better estimates during iterative clustering process. This method improves the estimates of
missing values by exploiting the cluster information such as cluster centroids and all available non-missing values in each
iteration. The clustering results of the proposed method are more significantly relevant to the biological gene annotations

than those of other methods, indicating its effectiveness and potential for clustering incomplete gene expression data.
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1. Introduction

DNA microarray technology has allowed for the mon-
itoring of the transcript abundance of thousand of genes
in parallel under a variety of conditions. Since Eisen et
al. first used the hierarchical clustering method to find
groups of coexpressed genes [1], numerous methods have
been studied for clustering gene expression data: self-
organizing map [2], k-means clustering [3], graph-theoretic
approach [4], mutual information approach [5], fuzzy c-
means clustering [6], diametrical clustering [7], quantum
clustering with singular value decomposition [8], bagged
clustering [9], CLICK [10]. However, the analysis results
obtained by clustering methods will be influenced by miss-
ing values in microarray experiments, and thus it is not al-
ways possible to correctly analyze the clustering results due
to the incompleteness of data sets. The problem of miss-
ing values have various causes, including dust or scratches
on the slide, image corruption, spotting problems [11, 12].
Ouyang et al. [13] pointed out that most of the microarray
experiments contain some missing entries and more than
90 % of rows (genes) are affected.

To convert incomplete microarray experiments to a
complete data matrix that is required as an input for a clus-
tering method, we must handle the missing values before
calculating clustering. To this end, typically we have either
removed the genes with missing values or estimated the
missing values using an imputation prior to cluster anal-
ysis. Of the methods proposed, several imputation meth-
ods have been demonstrating their effectiveness in building
the complete matrix of clustering: missing values are re-
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placed by zeros [14] or by the average expression value
over the row (gene). Troyanskaya et al. [11] presented two
correlation-based imputation methods: a singular value de-
composition based method (SVDimpute) and weighted K-
nearest neighbors (KNNimpute). Besides, a classical Ex-
pectation Maximization approach (EMimpute) exploits the
maximum likelihood of the convariance of the data for es-
timating the missing values [12, 13]. However, a common
limitation of existing approaches for clustering incomplete
microarray data is that the estimation of missing values
must be calculated in the preprocessing step of clustering.
Once the estimates are found, they are not changed during
the subsequent steps of clustering. Thus badly estimated
missing values during data preprocessing can deteriorate
the quality and reliability of clustering results, and there-
fore drive the clustering method to fall into a local min-
imum; it prevents missing values from being imputed by
better estimates during the iterative clustering process. To
minimize the influence of bad imputation, in the present
study we developed a method for clustering incomplete
microarray data, which iteratively finds better estimates of
missing values during clustering process. Incomplete gene
expression data is used as an input without any prior im-
putation. This method preserves the uncertainty inherent
in the missing values for longer before final decisions are
made, and is therefore less prone to falling into local op-
tima in comparison to conventional imputation-based clus-
tering methods. To achieve this, a method for measuring
the distance between a cluster centroid and a row (a gene
with missing values) is proposed, along with a method for
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estimating the missing attributes using all available infor-
mation in each iteration.

2. The Proposed Method

The objective of the droposed method is to classify a
data set X = {21,22,...,7,} in p-dimensional space
into k disjoint and homogeneous clusters represented as
C = {C1,C;,...,Cx}. Here each data point z; =
[z1,252,.... 2] (1 < j < n) is the expression vector
of the j-th gene over p-different environmental conditions
or samples. A data point with some missing conditions or
samples is referred to as an incomplete gene; a gene z; is
incomplete if z ;; is missing for 31 < I < p, i.e., an incom-
plete gene z; = [0.75,0.73,7,0.21] where z,3 is missing.
A gene expression data set X is referred to as an incom-
plete data set if X contains at least one incomplete gene
expression vector.

To find better estimates of missing values and improve
the clustering result during iterative clustering process, in
each iteration we exploit the information of current clus-
ters such as custer centroids and alt available non-missing
values. For example, a missing value zj; is estimated us-
ing the corresponding I-th attribute value of the cluster cen-
troid to which z; is closest in each iteration. To improve
the estimates during each teration, the proposed method at-
tempts to optimize the objective function with respect to the
missing values, which is often referred to as the alternating
optimization {AO) scheme. The objective of the proposed
method is obtained by minimizing the function J,,,:

k. n
min { J (U, V) = 3 N (i)™ Dy )

i=1 j=1
where
2
Dij == ||z — vi] @
is the distance between z; and v;,
V=[m,vs,...,0k) 3)
is a vector of the centroids of the clusters Cy,Cs, ..., Cy,
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is a fuzzy partition matr:x of X satisfying the following
constraints,

iij €[0,1), 1<i<k, 1<j<n,
Yimg=1, 1<j<n, 5)
0<Z;f:1uij<n, 1<i<k
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and
m € [1,00) (6)

18 & weighting exponent that controls the membership de-
gree yu;; of each data point z; to the cluster C;. Asm — 1,
J1 produces a hard partition where 1;; € {0, 1}. As m ap-
proaches infinity, J, produces a maximum fuzzy partition
where p;; = 1/k. This fuzzy k-means-type approach has
advantages of differentiating how closely a gene belongs to
each cluster [6] and being robust to the noise in microarray
data [15] because it makes soft decisions in each iteration
through the use of membership functions.

Under this formulation, missing values are regarded as
optimization parameters over which the functional J,, is
minimized. To obtain a feasible solution by minimizing
Eq. 1, the distance D;; between an incomplete gene z; and
a cluster centroid v; must be calculated as:

14
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where

if z;; is non-missing
if z;; is missing

1

Wit = { 1 —exp(—t/T) ®

We differentiate the missing attribute values from the
non-missing values in calculating D,;. The fraction part
in Eq. 7 indicates that D;; is inversely proportional to the
number of non-missing attributes used where p is the num-
ber of attributes. w;; indicates the confidence degree with
which I-th attribute of z; contributes to D;;; specifically,
wjr = 1if zy is non-missing and 0 < w; < 1 other-
wise. The exponential decay, exp(—t/7), represents the
reciprocal of the influence of the missing attribute z;; on
discrete time ¢ where 7 is a time constant. At the initial
iteration (¢ = 0), wj; has a value of 0. As time ¢ (i.e,,
the number of iterations) increases, the exponent part de-
creases fast, and thus wj; approaches 1. Let us consider
an incomplete data point z; = [0.75,0.73,7,0.21] where
initially 15 is missing. Suppose that z13 is estimated as a
value of (.52 after two iterations; then z; has a vector of
[0.75,0.73,0.52,0.21]. From this vector, we see that x5
participates in calculating the distance to cluster centroids
less than the other three values because it is now being es-
timated. Besides, the influence of x5 to D;; is increased
as the iteration continues because its estimate is improved
by an iterative optimization.

Using D;; in Eq. 7, the saddle point of .J,,, is obtained
by considering the constraint Eq. 5 as the Lagrange multi-
pliers:

VI (U, V,A)
k n n k
=D ()" Dy + 3N | D — 1| ©
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and by setting V.J,, = 0. If Dy; > Oforall4, jandm > 1,
then (U, V') may minimize J,,, only if,

k 2/(m-1)] "t
Dy
IR

z=1

1<i<k1<j<n,

(10)

and 0
m
N TALIS
v; = MJ_’ 1<i<k
> j=1 (piz)m™
This solution also satisfies the remaining constraints of
Eq. 5. Along with the optimization of the cluster centroids
and membership degrees in Eqs. 10 and 11, missing values
are optimized during each iteration to minimize the func-
tional J,,,. In this study, we optimize the missing values by
minimizing the function J(z;) presented by [16]:

(I

k

T(z;) = > (i)™ s — villa (12)
i=1

By setting V.J = 0 with respect to the missing attributes of

x;, a missing value x5 is calculated as:

_ i (i)
Til ="k T
Zi:l(lh’j)m

By Eq. 13, z;; is estimated by the weighted mean of all

cluster centroids in each iteration. At the initial iteration,

x; 18 initialized with the corresponding attribute of the

cluster centroid to which z; has the highest membership
degree.

This method iteratively improves a sequence of sets of
clusters until no further improvement in J,,, (U, V') is possi-
ble. It loops through the estimates for V; — Upey — Viqg
and terminates on ||Vi+1 — V3] € e. Equivalently, the ini-
tialization of the algorithm can be done on Uy, and the it-
erates become U; — Vi1 — Upyq, with the termination
criterion ||{U;11 — Uy|l < e. This way of alternating opti-
mization using membership computation makes the present
method be less prone to falling into local minima than con-
ventional clustering methods.

1<i<k. (13)

3. Experimental results

To test the effectiveness with which the proposed
method clusters incomplete microarray data, we applied
the proposed method and conventional imputation-based
clustering methods to the well-known yeast sporulation
data set of Chu et al. [17]., and compared the performance
of each method. The Chu data set consists of the expres-
sion levels of the yeast genes measured at seven time points
during sporulation. Of the 6,116 gene expressions analyzed
by Eisen et al. [1], 3,020 significant genes obtained through

two-fold change were used. The data set was preprocessed
for the test by randomly removing 5-25% (5, 10, 15, and
25) of the data in order to create incomplete matrices.

To cluster these incomplete data sets with conventional
methods, we first estimated the missing values using the
widely used KNNimpute [11] and EMimpute [12, 13]. For
the estimated matrices yielded by each imputation method,
we used EXPANDER [10] software that implements many
clustering methods, of which we investigated the results of
the k-means method. In these experiments, the parameters
used in the proposed method were € = 0.001,m = 3.0, and
the KNNimpute was tested with K = 20; these values were
chosen because they have been overwhelmingly favored in
previous studies [11]. In the tests reported here, we ana-
lyzed the performance of each approach at the number of
clusters of k = 5.

3.1 Comparison of clustering performance

To show the performance of imputation, most of im-
putation methods proposed to date, including KNNimpute
and EMimpute, have examined the the root mean squared
error (RMSE) between the true values and the imputed val-
ues. However, as Bo et al. pointed out {12], the RMSE is
limited to study the impact of missing value imputation on
cluster analysis. To make this study more informative re-
garding how large an impact the imputation method has on
cluster analysis, in the present work the clustering results
obtained using the alternative imputations were evaluated
by comparing gene annotations using the z-score [19, 12].
The z-score is calculated by investigating the relation be-
tween a clustering result and the functional annotation of
the genes in the cluster. To achieve this, this score uses the
Saccharomyces Genome Database (SGD) annotation of the
yeast genes, along with the gene ontology developed by the
Gene Ontology Consortium [20, 21]. A higher score of z
indicates that genes are better clustered by function, indi-
cating a more biologically significant clustering result.

Table 1 shows the clustering performance of the
KNNimpute/EMimpute-based clustering methods and pro-
posed method for the yeast sporulation data set. The z-
score of each method is listed with respect to the percent-
ages of missing values (5-25%). The k-means method us-
ing KNNimpute gave z-scores from 38.5% to 49.1%. The
z-scores of the k-means using EMimpute were ranged from
38.9 t0 49.5. In comparison to these methods, it is evident
that the proposed clustering method shows markedly bet-
ter performance, giving z-scores of more than 48.5 for all
missing values; it provided significantly better clustering
performance than other methods, giving z = 55.0 at 5%
and z = 51.9 at 10%.

The proposed method has a parameter, 7, a time con-
stant. We investigated the influence of the choice of 7 on
the clustering results in Table. 2. The proposed method
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Table 1: Comparison of the clustering performance (z-scores) of the imputation-based clustering methods and the pro-
posed method for the yeast sporulation data set of [17]. The k-means method was tested on the data obtained by KNNim-

pute and EMimpute.
Method \ %missing 5% 10% 15% 25%
KNNimpute+k-means 4790 49,10 45770 38.50
EMimpute+k-means 49.50 44.60 4540 38.90
Proposed (7=100) 55.06 51.97 50.87 48.59

Table 2: Compariscn of the clustering performance (z-scores) of the proposed method for different 7 values

Method \ %missing 5% 10% 15% 25%
Proposed (r=10) 5470 5047 5042 46.73
Proposed (7=50) 52.72 5198 51.36 46.46
Proposed (7=100) 55.06 5197 5087 4859
Proposed (7=500) 5488 5340 4857 4694

with different 7 = 10, 50, 100, and 500 values showed sim-
ilar performances over 5- |5% missing values. We observe
that the performance of the proposed is less insensitive to
the choice of .

Table 3 shows the comparison of RMSE of the imputa-
tion methods and the proposed method for the incomplete
data sets. From the comparison results for the sporulation
data, the KNNimpute gave better RMSE at lower missing
values whereas the proposed method gave better RMSE at
higher missing values. The EMimpute shows the most in-
effective of the methods considered. We see that RMSE
of each method increases as the missing value increases.
However, as mentioned in earlier, RMSE is limited to in-
vestigate the impact of the both imputation and clustering
together, indicating that better RMSE does not necessarily
lead to better z-scores.

The results of the ccmparison tests indicate that the
proposed method gave markedly better clustering perfor-
mance than the other im putation-based methods consid-
ered, highlighting the effe:tiveness and potential of the pro-
posed method.

3.2 Functional enrichment

To investigate the functional enrichment of the clus-
tered genes, we applied the proposed method to the yeast
cell-cycle data set of Cho et al. [18], which has been exten-
sively studied to reveal the gene functions of the yeast. The
Cho data set contains the 2xpression profiles of 6,200 yeast
genes measured at 17 time points over two complete cell
cycles. We used the same selection of 2,945 genes made
by Tavazoie et al. [3] in which the data for two time points
(90 and 100 min) were renoved.

The enricied functior al categories for each cluster ob-
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tained by the proposed method on the yeast cell-cycle data
set are listed in Table 4. The enrichment of each GO cat-
egory in each of the clusters was calculated by its p-value.
To compute the p-value, we employed the hypergeometric
distribution that was used by [3] and [6] in order to obtain
the probability of observing the number of genes from a
specific GO functional category within each cluster. More
detailed explanation on this p-value can be found in [3] and
[6]. A low p-value indicates that the genes belonging to the
enriched functional categories are biologically significant
in the corresponding clusters. In the present study, only
functional categories with p-value less than 5.0 x 10715
are reported.

Of the five clusters obtained for the yeast cell-cycle data
set (Table 4), the cluster C'; contains several enriched cate-
gories on ‘ribosome’. The highly enriched category in clus-
ter Cy is the ‘ribosome’ with p-value of 2.32 x 10737, The
GO categories ‘cytosol” and ‘protein biosysthesis’ are also
highly enriched in this cluster with p-values of 1.25 x 10736
and 1.27 x 1072 respectively. The cluster C'3 contains the
yeast genes corresponding to the DNA replication-involved
GO biological process. The highly enriched categories in
cluster C; are the ‘cell cycle’ with p-value of 3.16 x 1026
and the ‘DNA replication and chromosome cycle’ with p-
value of 2.38 x 10722, From the results of Table 4, we see
that the cluster obtained by the proposed method shows a
high enrichment of functional categories.

4. Conclusion

Conventional clustering methods have required a com-
plete data matrix as input even if many microarray data
sets are incomplete due to the problem of missing values.
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Table 3: Comparison of RMSE of the imputation methods and the proposed method for the yeast sporulation data set.

Method \ %missing 5% 10% 15% 25%
KNNimpute 0.11 020 028 0.51
EMimpute 0.17 030 038 0.60
Proposed 0.1s 022 027 037

Table 4: Enrichment of GO categories in each of the clusters obtained by the proposed method for the yeast cell-cycle
data set of [18]. The number of clusters is five. Only functional categories with p-values less than 5.0E-15 are reported.

Cluster No. of genes GO category GO number % of genes p-value
[ 656 nucleolus GO:0005730 8.23 6.45E-19
RNA metabolism GO:0016070 11.13  7.05E-19

ribosome biogenesis GO0:0007046 7.01 7.63E-17

RNA processing G0:0006396 991 1.39E-16

Co 850 ribosome G0O:0005840 11.88 2.32E-37
cytosol G0:0005829 13.76  1.25E-36

protein biosynthesis G0:0006412 14.82  1.27E-32

ribonucleoprotein complex G0:0030529 13.76  2.66E-30

cytosolic ribosome (sensu Eukarya) GO:0005830 8.59 1.01E-27

large ribosomal subunit GO0:0015934 6.12  1.88E-19

small ribosomal subunit GO:0015935 494 540E-17

cytosolic large ribosomal subunit (sensu Eukarya) GO:0005842 459 2.62E-15

Cs 523 cell cycle GO:0007049 19.69 3.16E-26
DNA replication and chromosome cycle GO:0000067 12.43  2.38E-22

chromosome GO:0005694 10.71  1.13E-19

mitotic cell cycle G0:0000278 12.43  1.90E-16

DNA metabolism GO:0006259 14.53 2.80E-16

Cy 618 carbohydrate metabolism GO:0005975 777 596E-15

In such cases, typically either genes with missing values
have been removed or the missing values have been esti-
mated using imputation methods prior to the cluster anal-
ysis. In the present study, we focused on the bad influ-
ence of the earlier imputation on the subsequent cluster
analysis. To address this problem, we have presented the
proposed method of clustering incomplete gene expression
data. By taking the alternative optimization approach, the
missing values are considered as additional parameters for
optimization. The evaluation results based on gene anno-
tations have shown that the proposed method is the supe-
rior and effective method for clustering incomplete gene
expression data. Besides the issues mentioned in present
work, we initialized missing values with the corresponding
attributes of the cluster centroid to which the incomplete
data point is closest. Although this way of initialization
is considered appropriate, further work examining the im-
pact of different initializations on clustering performance
is needed.
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