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Survival Analysis of Gastric Cancer Patients 
with Incomplete Data
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Purpose: Survival analysis of gastric cancer patients requires knowledge about factors that affect survival time. This paper attempted to 
analyze the survival of patients with incomplete registered data by using imputation methods. 
Materials and Methods: Three missing data imputation methods, including regression, expectation maximization algorithm, and multiple 
imputation (MI) using Monte Carlo Markov Chain methods, were applied to the data of cancer patients referred to the cancer institute at 
Imam Khomeini Hospital in Tehran in 2003 to 2008. The data included demographic variables, survival times, and censored variable 
of 471 patients with gastric cancer. After using imputation methods to account for missing covariate data, the data were analyzed using 
a Cox regression model and the results were compared. 
Results: The mean patient survival time after diagnosis was 49.1±4.4 months. In the complete case analysis, which used information 
from 100 of the 471 patients, very wide and uninformative confidence intervals were obtained for the chemotherapy and surgery haz-
ard ratios (HRs). However, after imputation, the maximum confidence interval widths for the chemotherapy and surgery HRs were 8.470 
and 0.806, respectively. The minimum width corresponded with MI. Furthermore, the minimum Bayesian and Akaike information crite-
ria values correlated with MI (−821.236 and −827.866, respectively).
Conclusions: Missing value imputation increased the estimate precision and accuracy. In addition, MI yielded better results when com-
pared with the expectation maximization algorithm and regression simple imputation methods.
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Introduction

According to statistics published by the World Health Orga-

nization (WHO) in 2010, most deaths occur from noncontiguous 

diseases. According to the statistics, more than 36 million deaths 

in 2008 were related to noncontiguous diseases, of which 48%, 

21%, and 12% were related to heart disease, cancer and respiratory 

disease, respectively.1 In Iran, cancer is the third-leading cause of 

death after heart disease and accident. According to the most re-

cent statistics from the Iran Cancer Research Center, in Iran gastric 

cancer is the most common type of cancer among men and the 

third-most common type among women.2,3

The prognosis of gastric cancer is usually poor,4,5 and therefore 

this disease has a high mortality rate. Given the low survival rate 

of such patients, it is very important to determine the factors that 

influence survival in gastric cancer patients. In Iran, various studies 

of gastric cancer patients6-10 and factors influencing their survival 

have been conducted using Cox regression modeling. Survival data 

analysis and modeling in the context of missing covariates present 

three major problems: 1) reduced efficacy because of the irregular 

information structure and complexity; 2) the lack of ability to use 

available software intended to analyze complete data; and 3) biased 
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parameter estimation because of differences between observed 

and non-observed data.11 Most researchers exclude subjects with at 

least 1 missing data point, resulting in a large amount of data and 

analytical inefficacy. Ignoring these missing data leads to biased 

estimations results, especially when there is a difference between 

the survival durations of patients with at least 1 missing data point 

and that of patients with complete data.11

Understanding the mechanism of missing data is a substantial 

issue when performing an analysis. There are three mechanisms 

of missing data, as follows: when the variable with missing data is 

independent of the other variables, the missing data are considered 

missing completely at random (MCAR); when the variable with 

missing data is dependent on the observed data, the missing data 

are called missing at random (MAR); and finally, when the variable 

is dependent on missing values, the missing data are missing not at 

random. In the first two cases, the mechanism of missing data is 

ignored11 because the negative effects of missing data on the esti-

mates are unavoidable and the missing data can be imputed. There 

are two types of imputation: simple imputation and multiple impu-

tation (MI). In simple imputation, there is only imputed 1 value for 

a missing value, whereas in MI more than 1 independent values are 

obtained from imputation model to replace each missing value, and 

therefore m completed sets of data are obtained.11

The aim of this study was to conduct a comprehensive compar-

ison of the results of registered factors that affect gastric cancers. To 

achieve this, we analyzed primary data with missing values using 

two simple imputation methods, regression and expectation maxi-

mization (EM) algorithm, and one MI method based on the Monte 

Carlo Markov Chain (MCMC). 

Materials and Methods 

1. Data

In this paper, data related to the survival of 471 gastric cancer 

patients who were referred to the cancer institute at Imam Kho-

meini Hospital, Tehran in 2003 to 2008 were investigated. The 

study variables included demographic data such as the age at di-

agnosis and sex; degree of tumor differentiation based on WHO 

criteria (weak, moderate, or good); tumor site (cardia, body, or an-

trum); tumor size (cm), pathological stage based on the American 

Joint Committee on cancer, 6th edition (II, III, or IV); treatment 

type, including chemotherapy (adjuvant, neoadjuvant, or pallia-

tive), radiotherapy, or surgery (resection or palliative bypass; yes/

no); and weight loss (yes/no). Patient survival was registered from 

the time of diagnosis to death or the end of the study. Subjects who 

could not be contacted directly or who did not die before the end 

of the study were considered censored observations.10 All tests were 

conducted at a significance level of 0.05.

2. Cox proportional hazards model

To identify the factors influencing patient survival, we used a 

general form of the Cox proportional hazards model12: 
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The proportional hazards hypothesis was evaluated with a goodness of fit test. 
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The proportional hazards hypothesis was evaluated with a 

goodness of fit test.

This model was evaluated in complete cases and after complet-

ing a data set consisting of missing data via the three imputation 

methods. Although there are many imputation methods, the per-

formance of these methods depends on the percentage of missing 

values, missing data pattern, type, and number of variables, and 

sample size. In this work, two simple imputation methods, regres-

sion and EM algorithm, and a MI method based on MCMC were 

used to impute absent values in a real data set, followed by a com-

parison of the results.

3. Complete case analysis 

This method deletes all cases with at least 1 missing variable; 

accordingly, the analyses are conducted using cases in which all 

variables have been observed and there are no missing values. The 

MCAR hypothesis must be stated when using this method to ob-

tain unbiased estimates. The complete case analysis is suitable for 

datasets with few missing values and a large sample size.

4. Regression imputation 

In this method, missing values based on predictions from the 

regression model are imputed.11 The variable with missing values 

is considered a response variable and other variables are predicting 

variables; therefore, missing values are predicted as new observa-

tions through a fitted model. In this context, two types of logistic 

regression (for nominal and ordinal categorical variables) were used 

to handle categorical variables and multiple linear regressions were 

used for continuous variable imputations.

5. Expectation maximization algorithm 

This iterative method is used to find the maximum likelihood 

of parameters in problems with missing data along with the simple 
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imputation of missing data.13 This algorithm can be summarized 

in 4 stages: replacing the missing values with estimated values, 

estimation of parameters, re-estimation of the missing values as-

suming that the new parameter is correct, and a new estimation 

of parameters. The algorithm is repeated in a loop that continues 

to converge. If the matrix of data Y=(Yobs ,Ymis) has a joint density 

function P(Y|θ) and log likelihood function l(Y|θ), the EM algo-

rithm can be rewritten as follows:
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this distribution after convergence. The EM algorithm is used to 

generate the initial data augmentation values. In the MI method, 5 

data sets were generated, and each of the 5 imputed sets were ana-

lyzed using the Cox regression model; we then combined the rules 

to obtain the final results. In this method, each data set is analyzed 

separately, and the results are combined according to specific rules 

to yield a general result comprising uncertainty about the missing 

data.14

7. Statistical software

Cox proportional hazard model fitting and regression imputa-

tion were performed using SPSS ver. 16.0 (SPSS Inc., Chicago, IL, 

USA). A MIX package of R software (version 2.15.1; Institute for 

Statistics and Mathematics, Vienna University of Economics and 

Business, Vienna, Austria; available at http://www.r-project.org/

index.html) was used for MI and EM algorithm imputation (imp.

mix and da.mix functions).

Results

Overall, 153 patients (32.5%) died; the remaining patients were 

censored at the end of the study or dropped out. The mean patient 

survival time after diagnosis was 49.1±4.4 months, with a maxi-

mum survival time of 125 months. Table 1 lists the demographic 

and clinical characteristics of the patients as percentages along with 

data missingness information. As shown in Table 1, the following 

variables have missing values: tumor differentiation degree (12.1%), 

tumor site (14.2%), tumor size (54.8%), pathological stage (50.5%), 

chemotherapy (3.2%), radiotherapy (4.9%), surgery (4.5%), and 

weight loss (39.9%). The overall missing data rate was 79%, requir-

ing the removal of 371 of the 471 patients.

Regarding the missing data problem, the missing data propor-

tion is not the only criterion for imputation. The missing data 

mechanisms and patterns have greater impacts on research results 

than does the missing data proportion.15 In order to obtain reliable 

results from the imputation, acceptance of the MAR or MCAR 

hypothesis is a key assumption. In the present study, Little’s MCAR 

test16 was performed using SPSS ver. 16.0 and the MCAR as-

sumption was not rejected (P=0.658). In addition, we considered 

the missing and non-missing data as two separate groups for all 

variables. We then compared the gender and age of the groups us-

ing the chi-square test and t-test. All P-values exceeded 0.05 and 

confirmed the assumption of MCAR for these data. 
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Table 2 lists coefficients of the variables in a Cox regression 

model before and after imputation along with the percentages of 

missing variables, standard errors, P-values, and hazard ratios 

(HRs) with 95% confidence intervals (CIs). The complete case 

analysis setting only used information from 100 of the 471 patients. 

The proportionality assumption for all variables was evaluated by 

including the time-dependent covariates. In this regard, the time-

dependent covariates were generated by creating interactions be-

tween the predictors and a function of survival time (logarithm of 

time) and were included in the model. Based on the goodness of fit 

test, the proportional hazard hypothesis was supported. The gener-

ated time-dependent covariates were not significant (P＞0.05).

As seen in Table 2, the age at diagnosis was the only significant 

variable in the complete case data analysis (P＜0.001). In addition, 

very large and uninformative CIs were obtained for the chemo-

therapy and surgery variable HRs. This problem was not observed 

after imputation. After a regression imputation of the missing 

values, the variables of sex, age at diagnosis, tumor differentiation 

degree (weak), and pathologic stage (IV) were found to be signifi-

cant (P＜0.001). Furthermore, after MI the variables of sex, age at 

diagnosis, tumor differentiation degree (weak), and pathologic stage 

(IV) were found to be significant (P＜0.001). In addition to the 

significant variables identified via MI, the variable of pathological 

stage (III) was significant in the EM algorithm imputation.

Furthermore, Table 2 shows that after imputation, the widths of 

the HR CIs were reduced; also, the CIs corresponding to MI were 

narrower than the others.

The Bayesian information crirerion (BIC) and Akaike informa-

tion criteria (AIC) values have been calculated for the gastric cancer 

data subjected to the three imputation methods and complete case 

analysis. The minimum BIC and AIC values correlated with the MI 

(-821.236 and -827.866, respectively).

Discussion

This study evaluated the performances of two simple imputa-

tion methods and the MI method with respect to missing data and 

compared the results of these techniques with the result of a com-

plete case analysis of gastric cancer data. 

Diagnosis of the prognostic factors of gastric cancer is very im-

portant when determining the type of treatment. The effects of the 

imputation methods were compared after a Cox regression model 

evaluation. The results of the present study indicate that the CIs 

corresponding to the imputed data sets were narrower than that of 

Table 1. Demographic and clinical characteristics of the patients 
(n=471)

Characteristic Value

Sex

    Male 357 (75.8)

    Female 114 (24.2)

Tumor differentiation degree

    Weak 170 (36.1)

    Moderate 186 (39.5)

    Good 58 (12.3)

    Missing 57 (12.1)

Surgery 

    No 262 (55.6)

    Yes 188 (39.9)

    Missing 21 (4.5)

Chemotherapy 

    No 11 (2.3)

    Yes 445 (94.5)

    Missing 15 (3.2)

Radiotherapy

    No 66 (14.0)

    Yes 382 (81.1)

    Missing 23 (4.9)

Time to death (mo) 49.1±4.4

Age at diagnosis (yr)

    <60 229 (48.6)

    >60 242 (51.4)

Pathological stage*

    II 14 (3.0)

    III 47 (10.0)

    IV 172 (36.5)

    Missing 238 (50.5)

Tumor site

    Cardia 160 (34.0)

    Body 112 (23.8)

    Antrum 132 (28.0)

    Missing 67 (14.2)

Weight loss (after diagnosis)

    No 237 (50.3)

    Yes 46 (9.8)

    Missing 188 (39.9)

Age (yr) 59.0±12.7

Tumor size (cm) 5.53±2.6 (54.8% missing) 

Values are presented as number (%) or mean±standard deviation. 
*Classification according to the standard of American Joint 
Committee on cancer 6th edition on gastric staging system. 
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Table 2. Cox regression results after applying different imputation methods and complete case analysis to gastric cancer data

Variable Method Coeff. (SE) P-value HR (95% CI)
Sex (reference is male) CC −0.143 (0.454) 0.753 0.867 (0.356~2.111)

Reg −0.556 (0.236) 0.019 0.573 (0.361~0.911)
EM −0.528 (0.235) 0.025 0.590 (0.372~0.935)
MI −0.552 (0.234) 0.022 0.576 (0.364~0.911)

Age at diagnosis (reference is <60) CC −1.367 (0.523) 0.009 0.255 (0.091~0.710)
Reg −3.742 (0.349) <0.001 0.024 (0.012~0.047)
EM −3.784 (0.355) <0.001 0.023 (0.011~0.046)
MI −3.779 (0.356) <0.001 0.023 (0.011~0.046)

Tumor size CC −0.006 (0.079) 0.939 0.994 (0.851~1.161)
Reg 0.003 (0.032) 0.915 1.003 (0.942~1.068)
EM −0.023 (0.031) 0.465 0.977 (0.919~1.039)
MI 0.031 (0.032) 0.521 1.031 (0.969~1.099)

Chemotherapy (reference is No) CC −10.14 (11.691) 0.386 0.000 (0.000~∞)
Reg 1.046 (0.606) 0.084 2.846 (0.868~9.337)
EM 0.848 (0.598) 0.156 2.335 (0.723~7.538)
MI 0.8304 (0.580) 0.155 2.294 (0.736~7.149)

Radiotherapy (reference is No) CC 0.178 (0.485) 0.714 1.195 (0.462~3.093)
Reg 0.035 (0.240) 0.883 1.036 (0.647~1.657)
EM 0.095 (0.241) 0.695 1.100 (0.686~1.763)
MI 0.054 (0.246) 0.827 1.055 (0.652~1.709)

Degree of differentiation (moderate) (reference is Good) CC 0.138 (0.459) 0.763 1.148 (0.467~2.824)
Reg 0.308 (0.211) 0.144 1.361 (0.899~2.059)
EM 0.244 (0.216) 0.258 1.276 (0.836~1.948)
MI 0.235 (0.212) 0.299 1.265 (0.834~1.917)

Degree of differentiation (wk) (reference is Good) CC 0.252 (0.534) 0.636 1.287 (0.452~3.666)
Reg 0.510 (0.214) 0.017 1.665 (1.095~2.532)
EM 0.500 (0.221) 0.024 1.649 (1.069~2.542)
MI 0.489 (0.217) 0.035 1.631 (1.066~2.494)

Weight lose (reference is No) CC 0.181 (0.438) 0.708 1.198 (0.513~2.826)
Reg 0.215 (0.263) 0.413 1.240 (0.741~2.075)
EM 0.371 (0.245) 0.130 1.449 (0.897~2.342)
MI 0.062 (0.255) 0.375 1.064 (0.645~1.754)

Tumor site (reference is Cardia) CC −0.174 (0.431) 0.686 0.840 (0.361~1.956)
Reg −0.035 (0.177) 0.845 0.966 (0.682~1.366)
EM −0.145 (0.180) 0.421 0.865 (0.608~1.231)
MI −0.055 (0.178) 0.563 0.946 (0.668~1.342)

Surgery (reference is No) CC 1.47 (11.691) 0.386 4.349 (0.000~∞)
Reg 0.058 (0.190) 0.761 1.060 (0.731~1.537)

EM 0.037 (0.188) 0.844 1.038 (0.718~1.499)
MI 0.189 (0.188) 0.332 1.208 (0.836~1.745)

Pathological stage III (reference is II)* CC 0.169 (0.573) 0.769 1.184 (0.385~3.640)
Reg 0.334 (0.212) 0.114 1.397 (0.921~2.117)
EM 0.707 (0.242) 0.004 2.028 (1.262~3.258)
MI 0.410 (0.232) 0.088 1.507 (0.956~2.375)

Pathological stage IV (reference is II)* CC 0.238 (0.622) 0.702 1.269 (0.375~4.293)
Reg 0.654 (0.244) 0.007 1.923 (1.192~3.102)
EM 0.874 (0.281) 0.002 2.396 (1.381~4.158)
MI 0.601 (0.270) 0.038 1.824 (1.075~3.096)

CC = complete case analysis; Reg = regression imputation; EM = expectation maximization algorithm; MI = multiple imputation; Coeff. = 
coefficient; SE = standard error; HR = hazard ratio; CI = confidence interval. *Classification according to the standard of American Joint 
Committee on cancer 6th edition on gastric staging system. 
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the complete analysis, indicating improved estimate precision. Gen-

erally, a wider interval implies a less efficient approach. MI is the 

best approach in terms of efficiency because it yielded the narrow-

est CI. Furthermore, the complete case analysis yielded the worst 

results based on this criterion. Additionally, the MI performance 

was superior according to the BIC and AIC criteria for comparing 

models. The key point in the present study analysis is that imputa-

tion techniques improved the identification of factors that influence 

survival. We found that the variables of sex, age at diagnosis, tumor 

differentiation degree (weak), and pathologic stage (IV) all had sig-

nificant effects on survival in gastric cancer patients.

In the MI setting, missing data were imputed five times to 

provide highly accurate estimates and avoid random effects on im-

putation. Two other imputation techniques (EM algorithm and re-

gression) are also suitable when working with missing data. How-

ever, these techniques only replace each missing value with a single 

value. Accordingly, imputation uncertainty and estimate precision 

are not taken into account and may be diminished because of the 

high proportion of missing data.17 In this regard, single imputation 

cannot represent any additional uncertainty that might arise when 

the reason for data missingness is unknown.

In addition, even if the proportion of missing data for each vari-

able is low, this may cause serious problems in multivariate model-

ing when patients with missing data are scattered throughout the 

dataset.17 This is because the number of complete cases available for 

analysis might be substantially reduced, thus increasing the risk of 

bias consequent to case exclusion. Power reduction is another con-

sequence of complete case analysis, and case deletion may result in 

biased regression coefficients if the remaining cases are not repre-

sentative of the entire sample.18

Several studies have confirmed the satisfactory performance of 

the MI technique in a simulation based on various criteria for han-

dling missing covariates. Peng and Zhu,19 in a study to evaluate the 

performance of MI, concluded that MI had a lower bias and better 

efficiency and coverage with respect to estimating true parameter 

values than did the EM algorithm and complete case analysis. 

In their study, Baneshi and Talei17 showed that the exclusion 

of cases with missing data led to bias and imprecise estimates and 

suggested that missing data imputation should be a primary step 

before conducting any modeling. Molenberghs et al.,20 in a study to 

compare different imputation techniques, concluded with a strong 

recommendation for MI. In addition, Marshall et al.21,22 concluded 

that MI might be the preferred approach for handling data miss-

ingness. Accordingly, the results of the present study confirm those 

previous findings.

Generally, invalid results are the usual consequence of exclud-

ing cases with missing data and analyzing only those subjects with 

complete data (complete case analysis). 

Instead, before conducting any analysis, a close examination 

should be conducted in an attempt to understand the reasons for 

data missingness. Once the MCAR or MAR mechanism is as-

sumed, missing data imputation should be performed before any 

modeling practice.

However, these results are only based on a single realistic popu-

lation and the MCAR mechanism. Therefore, a limitation of this 

study is that the obtained results are not fully generalizable to other 

populations with differing distributions, correlations, and missing 

data mechanisms; hence, further studies are required. 

This study addressed the performance of three imputation 

techniques with respect to a realistic data set from gastric cancer 

patients. Based on two evaluation criteria, the performance of MI 

was superior to that of simple imputation techniques of EM algo-

rithm and regression. Furthermore, these three imputation methods 

yielded better performances than the complete case analysis. How-

ever, further studies are required because these results were based 

only on a single data set.
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