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Abstract
Competing risks are commonly encountered in biomedical research. Regression models for competing risks

data can be developed based on data routinely collected in hospitals or general practices. However, these data
sets usually contain the covariate missing values. To overcome this problem, multiple imputation is often used
to fit regression models under a MAR assumption. Here, we introduce a multivariate imputation in a chained
equations algorithm to deal with competing risks survival data. Using pseudo-observations, we make use of the
available outcome information by accommodating the competing risk structure. Lastly, we illustrate the practical
advantages of our approach using simulations and two data examples from a coronary artery disease data and
hepatocellular carcinoma data.

Keywords: competing risks, missing data, multiple imputation, pseudo-observations, random for-
est

1. Introduction

In a competing risks setting, an individual can undergo failure from any of several event types but we
observe the first occurring event. A schematic for a single competing risks setting is represented in
Figure 1.

In the beginning, an individual is in the initial state 0, but may then experience an event of in-
terest (state 1) or a competing event (state 2). For regression models, several researchers proposed
a cumulative incidence function modeling approach assuming independence between subjects (Fine
and Gray, 1999; Klein and Andersen, 2005). Logan et al. (2011) use marginal models for clustered
event times with competing risks based on pseudo-observations (POs). Moreno-Betancur and La-
touche (2013) propose a regression model of the cumulative incidence function (CIF) with missing
causes of failures using POs. Nicolaie et al. (2013) propose dynamic POs method constructed from
the prediction probabilities at different landmark times. Kim and Kim (2016) also use POs for the
regression modeling of interval censored data and Do and Kim (2017) extend their approach to inter-
val censored data with missing causes of failures. Moreno-Betancur and Latouche (2013) propose a
method of the missing cause of failure problem for right-censored data using POs. Ahn and Mendolia
(2014) also used POs to compare median survivals for dependent data. POs-based regression is easy
to implement using existing software after the POs have been obtained. Therefore it has potential for
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Figure 1: A schematic for simple competing risks survival data.

flexible regression modeling. Logan et al. (2011) point out several properties of the POs using influ-
ence functions by Graw et al. (2009). They show thr expected value of POs when the covariate value
converges to the cumulative incidence function using an inverse probability of censoring weighting
formulation for the cumulative incidence estimate.

We collect registry data sets in hospitals/general practices but these data sets usually contain miss-
ing values of the covariates. It is not unusual for more than half the data to be missing for important
predictors (Ambler et al., 2005). A naive approach to deal with missing/incomplete covariates is to
conduct a complete case analysis (Ambler et al., 2007). In this case, patients with missing values are
excluded from the analysis. However, this approach typically results in substantial bias for the re-
gression coefficient estimates and less reliable predictions. Multiple imputation by chained equations
(MICE) is another widely used practical approach to deal with missing values (van Buuren et al.,
1999). MICE, also known as a full conditional specification, has been used successfully to generate
imputed values in survival data analyses (Shah et al., 2014). Shah et al. (2014) propose a MICE al-
gorithm using a random forest (RF) method (Breiman, 2001) as the conditional model for imputation.
The RF method automatically includes any interaction effect, as well as highly correlated covariates.
In addition, the RF method uses bootstrap aggregation of multiple regression trees to reduce the risk
of overfitting. Therefore, using an RF has an advantage over MICE methods based on classification
and regression trees (CART), as proposed by Burgette and Reiter (2010). For competing risks survival
data, we extend the RF-based MICE method using POs. Mogensen and Gerds (2013) also propose a
random forest method for competing risks using POs. They first construct the POs and use them as
an outcome variable in the random forest model. They compare the predictive performance of their
proposed pseudo random forests to that of Cox regression model. Because the model interpretation
is essential as well as the prediction error, we use POs as outcome variables in the Fine-Gray model
and examine regression coefficient estimates under the scenario of covariate missing, which was not
studied before. We compare a standard implementation using a MICE approach based on CART or
an RF, and then propose a new version of MICE that uses POs for the competing risks survival data.

The remainder of this paper is organized as follows. We present a PO-based RF MICE (PORF)
strategy in Section 2 in detail. Then, in Section 3, we use extensive simulation results to illustrate
our method’s performance for moderate sample sizes. In Sections 4 and 5, we apply our method to
coronary artery disease data and HCC data. Lastly, Section 6 concludes the paper with a discussion
of the results.

2. Missing data imputation method for competing risks survival data

Let Ti and Ci be the event time and the censoring time for subject i. Suppose the data consists of
n observations and the observation for subject i is (Xi, δi, ϵi,Zi), where Xi is the observation time as
(TiΛCi) and δi is the event indicator as I(Ti ≤ Ci). We denote ϵi the event type which can be observed
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if a certain event has occurred before Ci. We also denote Zi the p-dimensional covariate vector. We
assume the censoring time Ci is independent of the event time Ti. For the n observations, ZZZ is the
n × p covariate matrix. We arrange the columns of ZZZ so that ZZZ = (ZZZC , ZZZP), where ZZZC is a completely
observed covariate matrix, and ZZZP is a partially observed covariate matrix. To conduct the MICE
approach, we introduce PO matrix YYY , where YYY is composed of q columns of POs. We obtain the POs
at q different time points by using the jackknife method to substitute Xi, δi and ϵi (Klein and Andersen,
2005). Next, we describe how POs are obtained for the competing risks data. Assume that there are K
distinct event types, indexed by ϵi ∈ {1, 2, . . . ,K}. It is possible to experience experience failure from
any of the K event types; however, we only observe the event time for the first occurring event (or the
last follow up time if no failure has occurred). We assume no measurement error and non-informative
censoring. For event k, the cause-specific hazard function hk(t) and overall hazard function h·(t) are
defined as:

hk(t) = lim
∆t→0

{
Pr(t < T ≤ t + ∆t, ϵ = k|T > t)

∆t

}
and

h·(t) =
K∑

k=1

hk(t).

The CIF for event k at time t is obtained by

Fk(t) = Pr(T ≤ t, ϵ = k) =
∫ t

0
hk(u)S (u)du,

where S (t) = exp{−
∫ t

0 h·(u)du} is the overall survival function. Finally, the PO for the ith subject at
time t is defined as

νi(t) = nF̂k(t) − (n − 1)F̂(i)
k (t),

where F̂k(t) and F̂(i)
k (t) are the estimated CIFs based on the full sample and a sample of size n − 1,

respectively. In the latter case, we delete the ith observation. To select q (≥ 2) distinct time points
0 < t1 < · · · < tq < ∞ for the PO vector νi(t) = (νi(t1), . . . , νi(tq)), we may use percentile values based
on the estimated CIF. Andersen and Perme (2010) discuss the choice of the number of time points, q.
We select nine time points based on the estimated CIF. These nine points correspond to the tq values
as:

tq = inf{t : Fk(t) ≥ p},

where p = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, or 0.9. Originally, the POs were used for regression
modeling by Klein and Andersen (2005). We extend their approach for the imputation of missing data
using MICE for competing risks survival data. To implement MICE, we rearrange covariate matrix ZZZ
such that the complete observation proportion is decreasing from left to right. The MICE procedure
is as follows. Let ψ1, ψ2, . . . , ψp+q constitute the rearranged matrix Ψ. The first variable with the
smallest missing variable, say ψ1, is regressed on the other variables, ψ2, . . . , ψp+q. Missing values in
ψ1 are replaced by random draws from a predictive distribution of ψ1. The next variable with missing
values, say ψ2 is regressed with all other variables, ψ1, ψ3, . . . , ψp+q. Then, missing values in ψ2 are
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replaced by random draws from a predictive distribution of ψ2. This process is repeated for all other
variables with missing values, and this cycle constitutes one imputed data set. It is common to use
a generalized linear model for the predictive regression model. However, we use the RF algorithm
for the regression estimation. The RF algorithm uses bootstrapping sampling such that records with
missing values in the dependent variable are imputed by random draws from a normal distribution
centered on a conditional mean of the predicted value. We generate several imputed data sets to
represent the uncertainty about the missing value. Then we combine the estimates from the multiple
imputed data sets using Rubin’s rule (Rubin, 1987). When there are B imputed data sets, the combined
estimate θ̂ is given by

θ̂ =
1
B

B∑
b=1

θ̂b,

where θ̂b is an estimate of a quantity of interest, such as a regression coefficient. Suppose Vb is the
estimated variance of θ̂b, and V is the average of Vb across the B imputed data sets. Then, the following
combined variance accommodates both the within-imputation and the between-imputation variability:

var
(
θ̂
)
= V +

(
1 +

1
B

)
W,

where W = 1/(B − 1)
∑B

b=1(θ̂b − θ̂)2. There are several regression models for competing risks data
(Aalen et al., 2008). The Fine-Gray method directly models the CIFs (Fine and Gray, 1999). For
completeness, we describe the model here. Assume βk and Zi are a 1 × p vector of regression coef-
ficients for event k and a p × 1 vector of covariates for subject i, respectively. Then, the Fine-Gray
model is given by

Fk(t; Zi) = 1 − exp{−Λ0(t) · exp(βk · Zi)},

where i = 1, . . . , n, and Λ0(t) is an unspecified non-decreasing baseline. Note that a positive βk

indicates that the CIF increases with Zi. Furthermore, suppose that C is the censoring time and G(t)
is the survival function for C, Pr(C ≥ t). The following score function is proposed to estimate the
regression coefficients for the event of interest k:

U(βk) =
n∑

i=1

∫ ∞

0

Zi −
∑n

j=1 w j(s)Ỹ j(s)Z j exp(βkZ j)∑n
j=1 w j(s)Ỹ j(s) exp(βkZ j)

 wi(s)dÑi(s),

where Ñi(t) = I(Ti ≤ t, XTi = k), Ỹi(t) = 1 − Ñi(t−), ri = I(Ci ≥ min(Ti, t)), and wi(t) = ri(t){Ĝ(t)/
Ĝ(min(t,Ti,Ci))}. We can see that w j(t)Ỹ j(t) approximates the sub-distribution risk set. Without
the competing risks, the weighted score function reduces to the standard score function for the Cox
model. In the following simulation section, the PO-based multiple imputation method is compared
to the methods of Burgette and Reiter (2010) (CART-based MICE; CRT) and Shah et al. (2014)
(RF-based MICE; SHAH). CRT is a nonparametric approach to implement multiple imputation via
chained equations using sequential regression trees as the conditional models. This method uses the
CART imputation engine that can fit interactions, nonlinear relations without data transformations.
However, the SHAH method uses the random forest imputation for the multivariate imputation by
chained equations.
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3. Simulation studies

To evaluate the performance of the proposed method for the competing risk survival data, we compare
it against the CRT method and the SHAH method. Here, the R packages tree and mice are used for
the simulation comparison (Ripley, 2014; van Buuren and Groothuis-Oudshoorn, 2011). Variables
were artificially made under the missing-at-random (MAR) assumption. Three different simulation
scenarios are considered, according to the competing event and censoring proportions. Competing
risks survival data under the proportional hazards model are generated as follows. For the event of
interest in state 1 and the competing event in state 2, we assume cause-specific hazards for subject i,
given by:

h1(t|Zi) = t · exp{β · Zi}

and

h2(t|Wi) = t · exp{γ ·Wi},

where the regression parameter β = (1, 1, 1, 1, 0.1, 0.1, 0.1), and γ = (1.2, 0.2, 1.2) for scenario 1,
γ = (1.2, 0.3, 0.8) for scenario 2, or γ = (1, 1, 1) for scenario 3. The covariate matrix for state 1 is
composed of seven dimensional vectors, Z

′

i = (z1, z2, z3, z4, z2
4, z1z2, z1z4), where z1 is drawn from a

normal distribution N(−4, 0.5), z2 is drawn from a binomial distribution Bin(0.5), z3 is drawn from
a uniform distribution U(−4,−2), and z4 is drawn from N(−3, 0.5). However, the covariate matrix
for state 2 is composed of three dimensional vectors, W

′

i = (w1,w2,w3), where w1 is drawn from a
normal distribution N(−6, 1), w2 is drawn from a Weibull distribution Wei(1, 0.5), and w3 is drawn
from a uniform distribution U(−6,−4). First, we simulate the failure time with the all-cause hazard
h·(t|Zi,Wi) = h1(t|Zi) + h2(t|Wi). We then run a binomial experiment for a simulated failure time that
decides on the event of interest with probability h1(t|Zi)/h·(t|Zi,Wi) (Beyersmann et al., 2012). In
this way, we generate competing risks data and random right-censoring times C. We simulate 1,000
subjects from each design, and delete observations from z1 through w3 via a MAR mechanism that
depends on z3, which is completely observed. This leads to around 10% missing values for every
variable, except z3. On average, 60% of the covariate matrix is complete. The γ values change the
competing risks proportions so that around 3%, 6%, and 10% of competing events are generated in
scenarios 1, 2, and 3. To make the time points for νi(t) fixed across simulation-runs, we generate
1,000,000 subjects, and select 9 points based on percentiles of the cumulative incidence estimate.
We perform multiple imputation using the randomForest package, with default settings (Liaw and
Wiener, 2002). After the all the covariates are imputed, we fit the competing risks model based on
the crr function from the cmprsk package in R (Gray, 2014). Using B = 20 or 40 may produce more
accurate results in some situations; however, in our case, B = 10 produces good results (Graham et
al., 2007).

We compared the proposed method (PORF) with the CRT algorithm (Burgette and Reiter, 2010)
and the SHAH algorithm (Shah et al., 2014). In addition, we included the complete case analysis
results (CC) for the comparison. CRT first sorts the columns of (Z

′

i ,W
′

i ) to have increasing numbers
of missing values. Then it impute missing values in (Z

′

i ,W
′

i ) with predictive values from the CART
model fit using the R function tree. In order to yield 10 imputed sets, CRT repeats this step 10 times.
However, SHAH uses the predictive values to replace missing values from the random forest fit using
the R function mice. The mice function has wide capabilities so that there are broad imputation engines
such as a Bayesian linear regression, a polytomous logistic regression, a linear discriminant analysis
and the random forest missing imputation. To implement the standard random forest, we set ‘rf’ for
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Table 1: Scenario 1: Averages of the estimated regression coefficients and the standard errors across 1,000
simulation runs; true β = (1, 1, 1, 1, 0.1, 0.1, 0.1), competing risk coefficient γ = (1.2, 0.2, 1.2)

n Method β̂1 SE1 β̂2 SE2 β̂3 SE3 β̂4 SE4 β̂5 SE5 β̂6 SE6 β̂7 SE7

300

PORF 0.929 0.535 0.909 1.021 0.934 0.120 0.910 1.131 0.094 0.155 0.084 0.254 0.081 0.165
CRT 0.499 0.492 1.076 1.016 0.978 0.119 0.074 1.172 0.056 0.162 0.127 0.253 −0.061 0.158
SHAH 0.575 0.507 0.694 0.997 0.970 0.123 −0.080 1.113 0.029 0.154 0.032 0.247 −0.059 0.159
CC 1.118 0.979 1.132 1.273 0.987 0.171 1.150 1.833 0.120 0.224 0.108 0.317 0.108 0.317

400

PORF 0.921 0.482 1.002 0.882 0.946 0.105 0.920 0.991 0.098 0.134 0.104 0.219 0.087 0.150
CRT 0.471 0.439 1.146 0.873 0.958 0.105 0.212 0.999 0.076 0.135 0.141 0.217 −0.060 0.142
SHAH 0.535 0.448 0.737 0.876 0.950 0.107 0.046 0.988 0.050 0.136 0.039 0.217 −0.062 0.141
CC 1.106 0.835 1.096 1.085 0.985 0.149 1.161 1.555 0.119 0.189 0.127 0.270 0.111 0.270

500

PORF 0.945 0.439 0.950 0.783 0.954 0.096 0.960 0.886 0.117 0.120 0.092 0.195 0.091 0.136
CRT 0.469 0.397 1.070 0.777 0.946 0.096 0.257 0.892 0.085 0.121 0.125 0.193 −0.064 0.128
SHAH 0.552 0.416 0.654 0.802 0.939 0.098 0.142 0.909 0.064 0.126 0.022 0.199 −0.060 0.130
CC 0.981 0.748 1.070 0.971 0.979 0.133 1.107 1.391 0.117 0.167 0.122 0.242 0.101 0.242

PORF = PO-based RF MICE; CRT = CART-based MICE; SHAH = RF-based MICE; CC = complete case analysis results.
PO = pseudo-observation; RF = random forest; MICE = multiple imputation by chained equations; CART = classification
and regression trees.

Table 2: Scenario 2: Averages of the estimated regression coefficients and the standard errors across 1,000
simulation runs; true β = (1, 1, 1, 1, 0.1, 0.1, 0.1), competing risk coefficient γ = (1.2, 0.3, 0.8)

n Method β̂1 SE1 β̂2 SE2 β̂3 SE3 β̂4 SE4 β̂5 SE5 β̂6 SE6 β̂7 SE7

300

PORF 0.904 0.560 0.929 1.074 0.901 0.126 0.918 1.169 0.098 0.160 0.101 0.266 0.062 0.174
CRT 0.420 0.518 1.050 1.068 0.873 0.126 0.237 1.219 0.078 0.168 0.132 0.264 −0.058 0.167
SHAH 0.452 0.506 0.678 1.061 0.867 0.129 −0.007 1.167 0.044 0.164 0.039 0.262 −0.068 0.161
CC 0.901 1.018 1.086 1.328 0.893 0.177 1.055 1.913 0.110 0.234 0.116 0.329 0.096 0.330

400

PORF 0.914 0.504 0.921 0.938 0.920 0.109 0.915 1.044 0.093 0.142 0.099 0.232 0.075 0.157
CRT 0.440 0.456 1.057 0.931 0.863 0.109 0.212 1.056 0.067 0.144 0.133 0.230 −0.047 0.148
SHAH 0.473 0.453 0.677 0.937 0.856 0.112 0.025 1.036 0.043 0.146 0.039 0.231 −0.057 0.143
CC 0.884 0.876 1.071 1.144 0.887 0.154 0.995 1.638 0.102 0.198 0.135 0.283 0.096 0.283

500

PORF 0.922 0.462 0.921 0.839 0.932 0.099 0.922 0.948 0.103 0.129 0.100 0.207 0.081 0.143
CRT 0.413 0.410 1.075 0.831 0.853 0.098 0.212 0.949 0.073 0.129 0.139 0.205 −0.056 0.133
SHAH 0.496 0.414 0.684 0.845 0.846 0.100 0.099 0.950 0.051 0.134 0.042 0.209 −0.051 0.131
CC 0.889 0.784 1.038 1.028 0.874 0.138 1.001 1.461 0.102 0.175 0.129 0.254 0.096 0.253

PORF = PO-based RF MICE; CRT = CART-based MICE; SHAH = RF-based MICE; CC = complete case analysis results.
PO = pseudo-observation; RF = random forest; MICE = multiple imputation by chained equations; CART = classification
and regression trees.

the method options. Tables 1–3 show the simulation results for the three scenarios, respectively. The
simulation results are summarized across 1,000 Monte Carlo replicates.

Table 1 displays the averages of the estimated regression coefficient and the standard errors. For
the main effect terms, the CRT and the SHAH methods significantly underestimate the true value of β.
In contrast, the proposed PORF method produces regression coefficients with less bias than the CRT
and SHAH methods. Note that the estimates of β3 are relatively similar compared to other coefficients
in Table 1. We think this is due to its significance. When the competing risk proportion increases,
the PORF performs better than others (Table 2 and Table 3). Other factors such as the competing risk
proportion and the covariate significance might affect the coefficient estimation. The bias in the CRT
and SHAH algorithms does not decrease when the sample size increases to 400 and 500. In addition,
for the quadratic and interaction terms, the results using the proposed method are less biased than
those of the CRT and SHAH methods. The reason for the heavy bias in CART and SHAH might
come from the fact that these methods are originally designed for standard survival. We also note that
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Table 3: Scenario 3: Averages of the estimated regression coefficients and the standard errors across 1,000
simulation runs; true β = (1, 1, 1, 1, 0.1, 0.1, 0.1), competing risk coefficient γ = (1, 1, 1)

n Method β̂1 SE1 β̂2 SE2 β̂3 SE3 β̂4 SE4 β̂5 SE5 β̂6 SE6 β̂7 SE7

300

PORF 0.915 0.582 0.946 1.105 0.922 0.127 0.914 1.216 0.111 0.166 0.110 0.273 0.083 0.181
CRT 0.365 0.543 1.073 1.098 0.832 0.127 0.230 1.269 0.083 0.174 0.143 0.272 −0.066 0.176
SHAH 0.415 0.523 0.672 1.091 0.827 0.130 0.024 1.217 0.053 0.172 0.042 0.270 −0.071 0.167
CC 0.895 1.041 0.988 1.358 0.869 0.179 1.031 1.954 0.106 0.239 0.116 0.337 0.098 0.337

400

PORF 0.914 0.524 0.947 0.962 0.914 0.111 0.918 1.078 0.090 0.147 0.111 0.238 0.084 0.162
CRT 0.366 0.473 1.084 0.955 0.826 0.111 0.206 1.099 0.075 0.150 0.146 0.236 −0.061 0.153
SHAH 0.429 0.465 0.676 0.944 0.820 0.113 −0.009 1.080 0.041 0.153 0.044 0.233 −0.062 0.147
CC 0.844 0.897 1.046 1.172 0.852 0.156 0.915 1.682 0.093 0.203 0.133 0.290 0.090 0.290

500

PORF 0.927 0.475 0.903 0.858 0.912 0.099 0.923 0.976 0.105 0.132 0.100 0.212 0.087 0.147
CRT 0.386 0.422 1.038 0.852 0.821 0.099 0.205 0.973 0.072 0.132 0.134 0.210 −0.057 0.136
SHAH 0.444 0.421 0.667 0.861 0.816 0.101 0.068 0.987 0.050 0.139 0.041 0.213 −0.058 0.133
CC 0.850 0.803 0.985 1.052 0.843 0.139 0.943 1.499 0.096 0.180 0.12 0.26 0.089 0.259

PORF = PO-based RF MICE; CRT = CART-based MICE; SHAH = RF-based MICE; CC = complete case analysis results.
PO = pseudo-observation; RF = random forest; MICE = multiple imputation by chained equations; CART = classification
and regression trees.

the bias of CC is comparable to the PORF method. However, the average of standard errors has almost
doubled compared to the PORF. Dropping the incomplete cases in the analysis translates directly to
a loss in sample size to estimate the regression coefficients. Therefore, the complete case analysis
produces a loss of efficiency.

4. The coronary artery disease data example

Coronary artery disease (CAD) is the leading cause of death in the US and Europe. It is one of the
most common types of heart disease and occurs when the arteries become narrowed. The build-up
of cholesterol and other materials such as plaque on inner walls is the main cause. Asan Medical
Center has constructed a revascularization registry to study left main or multivessel CAD (Seung et
al., 2008). They have compared the treatment effect of a percutaneous coronary intervention (PCI)
with coronary-artery bypass grafting (CABG) regarding long-term outcomes. Long-term adverse
outcomes were measured in terms of death, myocardial infarction (MI), and stroke or target-vessel
revascularization. A combined endpoint of death, MI, stroke, and the revascularization was consid-
ered a primary endpoint in the previous study; however, it is also possible to investigate the effect
of the coronary stents along with other clinical, angiographic or procedural variables for cardiac-
specific death. We included 5,775 patients in the analysis and several clinical (age, comorbidity,
hemodynamic status, clinical presentations, and prior history of PCI or CABG) and angiographic fac-
tors (coronary anatomy, disease extents, and procedural complexities) were considered as possible
factors for cardiac-specific death. The covariate variables are age (years), gender, body mass index
(BMI), hypertension (yes/no), diabetes (yes/no), current smoker (yes/no), hyperlipidemia (yes/no),
PCI intervention (yes/no), prior MI (PMI; yes/no), prior PCI (PPCI; yes/no), prior congestive heart
failure (PCHF; yes/no), chronic lung disease (CLD; yes/no), previous stroke (PST; yes/no), peripheral
vascular disease (PVD; yes/no), renal dysfunction (RD; yes/no), electrocardiographic finding (ELF;
sinus rhythm vs atrial fibrillation + others), acute coronary syndrome (ACS; yes/no), ejection fraction
(EF; %), left main (LM) disease (yes/no), proximal left anterior descending artery (PLAD) disease
(yes/no), right CAD (yes/no), bifurcation lesion (BL; yes/no), restenotic lesion (RL; yes/no), total
occlusion (TO; ≥ 1 vs < 1), EuroSCORE, and SYNTAX Score. After the surgery, 446 patients and
294 patients died of cardiac related and non-cardiac related causes, respectively during the follow-up.
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Figure 2: Cumulative incidence function for cardiac death.

Figure 2 shows the cumulative incidence rate of the cardiac death. The cumulative incidence fun-
tion is estimated using the R function cuminc from the cmprsk package. It seems the risk increases
gradually to 10 years and starts to ascend more steeply. Among the covariate the following vari-
ables have missing values : BMI(1.2%), RF(14.6%), ACS(12.2%), EuroSCORE (13.1%), SYNTAX
score(39.6%), PLAD(13.9%), BL(10.4%), and TO(8.6%). Only 3442 patients have complete data on
all covariates. We apply PORF, CRT, and SHAH to the data to deal with the missing values. Then we
fit both univariate and multivariate Fine-Gray regression models. To construct the POs, we use nine
time points based on the CIF of the cardiac death. Supplementary Table 1 shows the results of the
univariate analysis. Several factors such as age, diabetes, prior MI, prior congestive heart failure, pre-
vious stroke, peripheral vascular disease, renal dysfunction, atrial fibrillation, and bifurcation lesion
seem to increase the cardiac mortality significantly. However, factors such as large BMI, the PCI and
the large ejection fraction level tend to decrease the cardiac mortality risk. In the multivariate regres-
sion (Table 4), the final model based on the PORF method is similar with the final model using CRT
because the missing proportion is low. Note that the SYNTAX score is not statistically significant in
the analysis result based on the SHAH method.

5. The hepatocellular carcinoma data example

We apply the PORF method to a retrospective study of hepatocellular carcinoma data as the sec-
ond example. The data comprise 20 covariate variables measured on 525 patients who experienced
curative hepatectomies at the Asan Medical Center in Korea from 2000 to 2006. The primary study
endpoint is HCC-specific death after hepatic resection surgery, but patients can also die of non-cancer-
related causes. Thus, our study uses regression modeling to predict post-hepatectomy outcomes. All
patients underwent magnetic resonance imaging (MRI), computed tomography (CT), chest CT, and
bone scintigraphy, along with serum hepatitis markers. Therefore, we could collect several covari-
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Table 4: Multivariate analysis results for the coronary artery disease data

Covariate PORF CRT SHAH
β̂ SE P β̂ SE P β̂ SE P

Age, year 0.031 0.007 <0.001 0.034 0.007 <0.001 0.035 0.007 <0.001
Diabetes

yes 0.237 0.098 0.016 0.241 0.098 0.014 0.257 0.098 0.009
RD

yes 0.584 0.187 0.002 0.605 0.188 0.001 0.599 0.189 0.002
ELF

AF + others 0.552 0.200 0.006 0.566 0.198 0.004 0.516 0.201 0.010
LM disease

yes 0.646 0.121 0.001 0.644 0.121 0.001 0.762 0.111 <0.001
EF, % −0.023 0.004 <0.001 −0.025 0.004 <0.001 −0.025 0.004 <0.001
SYNTAX Score 0.011 0.004 0.010 0.011 0.004 0.007
EuroSCORE 0.128 0.027 <0.001 0.112 0.027 <0.001 0.120 0.027 <0.001

PORF = PO-based RF MICE; CRT = CART-based MICE; SHAH = RF-based MICE; RD = renal dysfunction; ELF = elec-
trocardiographic finding; EF = ejection fraction; LM = left main; PO = pseudo-observation; RF = random forest; MICE =
multiple imputation by chained equations; CART = classification and regression trees.

ates with regard to histological and surgical information, as well as clinical information (Shim et
al., 2012). Of the 20 covariates, 11 covariates have missing values between 5% and 38% of their
values. The acquired covariate variables are: age (years), gender, body mass index (BMI; < 23 vs
≥ 23), Child-Pugh class (A/B), etiology (hepatitis B virus vs hepatitis C virus + others), indocyanine
green retention rate at 15 minutes (ICG R15; < 14% vs ≥ 14%), serum aspartate aminotransferase
(AST; IU/L), serum alanine aminotransferase (ALT; IU/L), liver cirrhosis (yes/no), tumor size (cm),
alpha-fetoprotein (AFP; ng/mL), number of tumors, microvascular invasion (yes/no), capsular inva-
sion (yes/no), microsatellite lesion (yes/no), Edmonson grade (I or II vs III or IV), American Joint
Committee on Cancer stage (AJCC; I vs II + IIIA), resection type (major/minor), resection margin
width (< 10 mm vs ≥ 10 mm), and red cell transfusion (yes/no). After the surgery, 9 patients and
142 patients died of non-cancer-related causes and the HCC-related causes, respectively, whereas 374
patients were censored before experiencing HCC-specific death. Our analysis explores possible risk
factors related to HCC-specific death. Supplementary Figure 1 shows the cumulative incidence rate
of HCC-specific death. After about 3 years, the cumulative incidence rate increases beyond 10%, and
increases to 40% at around 10 years.

We fit both univariate and multivariate Fine-Gray regression models. With regard to the covariate
variables, the continuous variables of AFP, tumor size, AST, and ALT are severely skewed. Thus,
we use a log transformation for these variables to obtain more stable parameter estimates. Many
variables have complete records, but 11 have missing values between 5% and 38%. The missing rates
are mostly modest; however, they are scattered among the variables so that only 132 patients have
complete data on all variables. Assuming a MAR mechanism, we create B = 10 complete data sets
using the PORF method. We order variables according to the number of values they are missing, from
smallest to largest, as discussed in Section 2. As in the simulation study, to construct the POs, we use
nine time points based on the CIF of the HCC-related death. Supplementary Table 2 shows the results
of the univariate analysis. The results based on the CRT and the SHAH methods are also included in
the table. First, it seems that the log-transformed tumor size, male gender, and microvascular invasion
status increase the HCC-specific mortality significantly. However, a large BMI (≥ 23) and the Child-
Pugh class (A) tend to decrease HCC-specific mortality risk. While the PORF method produces
similar results to those of the CRT and SHAH overall, the AJCC stage is only significant in the PORF
method. The final model based on the PORF method is similar to the final model using CRT in the
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Table 5: Multivariate analysis results for the HCC data

Covariate PORF CRT SHAH
β̂ SE P β̂ SE P β̂ SE P

Log tumor size 0.421 0.153 0.006 0.420 0.150 0.005 0.471 0.151 0.002
BMI
≥ 23 −0.451 0.176 0.010 −0.451 0.176 0.010 −0.448 0.176 0.011

Child-Pugh class
A −1.215 0.396 0.002 −1.146 0.355 0.001

AJCC stage
II and IIIA 0.628 0.270 0.020 0.637 0.260 0.014 0.619 0.273 0.023

MIC invasion
yes 0.688 0.255 0.007 0.706 0.245 0.004 0.610 0.256 0.017

PORF = PO-based RF MICE; CRT = CART-based MICE; SHAH = RF-based MICE; BMI = body mass index; AJCC =
American Joint Committee on Cancer; MIC = microvascular; PO = pseudo-observation; RF = random forest; MICE =
multiple imputation by chained equations; CART = classification and regression trees.

multivariate regression (Table 5). The log-transformed tumor size, low BMI (< 23), Child-Pugh class
(B), AJCC stage (II and IIIA), and microvascular invasion are risk factors for HCC-specific mortality.
Note that the AJCC stage is not statistically significant in the univariate regression based on the CRT
method; however, it is significant in the final multivariate model. Thus, this variable could be omitted
when using only the CRT method. However, the SHAH method does not show the significance of the
Child-Pugh class.

6. Discussion

Missing data for covariates are inevitable when patient data are collected from various aspects. If there
is more than one competing event and some of event types are rare, we simply combine them into a
composite outcome. However, ignoring competing risks may lead to misleading or even erroneous re-
sults that could obstruct the understanding of survival trends. MICE is an increasingly popular method
for multiple imputation (Royston and White, 2011). Here, we propose another MICE algorithm using
POs for competing risks data. This method uses the RF as an imputation engine so that it can flexibly
deal with interactions, nonlinear relations, and complex distributions without parametric assumptions.
Using the POs method, we make better use of the available outcome information by accommodating
the competing risks structure. The proposed method results in less biased estimates than those of the
CRT and SHAH methods in the simulation studies. The results based on real data show that there
is marginal difference among different imputation methods. Sample sizes are 5775 and 525 for the
CAD study and HCC study, respectively. Overall, estimated standard errors are quite small due to the
large sample size for the CAD study. Therefore, all three methods produce similar results. For the
HCC study, the missing rates are 19%, 7%, and 8% for the Child-Pugh class, AJCC stage, and MIC
invasion variables in the final model. These small missing rates might attenuate differences among the
methods. Additional research is needed in future work to deal with missing outcome variables and to
extend the proposed method into a multi-state model setting.
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