• Title/Summary/Keyword: mirrors

Search Result 491, Processing Time 0.029 seconds

1.3μm Waveband Al2O3/a-Si Thin-Film Etalon and Measurements of Optical Constants (1.3μm 파장 Al2O3/a-Si 박막 에탈론과 광학 상수 측정)

  • Song, H.W.;Kim, J.H.;Han, W.S.
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.5
    • /
    • pp.476-478
    • /
    • 2005
  • We have fabricated a Fabry-Perot etalon around $1.3\;{\mu}m$ wavelength utilizing $Al_{2}O_3$ and a-Si thin films. A full width at half maximum of ${\sim}12.1nm$ and a finesse value of 53 were found from the measured resonant transmission spectra. Single thin film of $Al_{2}O_3$ was analyzed by spectroscopic ellipsometry. A refractive index of a-Si thin film was measured as 3.120 in the real part and 0.002 in the imaginary part, respectively. The thin-film pairs of $Al_{2}O_3$ and a-Si are applicable to output mirrors of vertical-cavity surface-emitting lasers at $1.3{\mu}m$ waveband.

A Convergence Study through Flow Analysis of Automotive Side Mirror (자동차 사이드미러의 유동 해석을 통한 융합연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.161-166
    • /
    • 2019
  • This study examines the flows near the different side mirrors by analyzing the flow due to air resistance at A, B and C models of automotive side mirrors. Model A is a square-shaped side-mirror. Model B is a triangular side-mirror and model C is an oval-shaped side-mirror. The air resistance of the side-mirror while driving is reduced and the automotive power can be reduced by changing the design of automotive side-mirror. As analysis result, as the pressure of air resistance against side mirror becomes larger, it can be seen that the air flow rate becomes great. Therefore, it can be estimated that the smaller the pressure of air resistance, the smaller the flow rate and the better the air flow. Therefore, it can be acknowledged that model B is the best model. As the design data of the automotive side mirror obtained on the basis of this study result are utilized, the esthetic sense can be shown while driving a car at real life.

Ultra-Precision Machining of Off-Axis Asymmetric Large-area Reflecting Mirror Using ELID Grinding Process (ELID 연삭을 이용한 비축 비구면 렌즈의 초정밀 가공)

  • Jung, Myung-Won;Shin, Gun-hwi;Kim, Geon-Hee;Ohmori, Hitoshi;Kwak, Tae-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • This study focused on the application of ELID mirror-surface grinding technology to the manufacture of off-axis asymmetric large-area reflecting mirrors made of BK7 glass. The size of the parts, such as asymmetric large-area mirrors or lens, made form-accuracy or roughness especially hard to measure after machining because of the measuring range limit of measurement devices. In this study, the ELID grinding system has been set up for mirror-surface machining experiments manufacturing off-axis asymmetric lenses. A measuring method using a reference workpiece has been suggested to measure the form-accuracy and roughness. According to the experimental results, even when using only a reference workpiece, it is confirmed that the surface roughness was 8 nmRa and form-accuracy was 80 nmRMS, with a best fit asymmetric radius when using a grinding wheel of #8,000. It is found that the accuracy of large-area parts could be estimated by the proposed process.

Developing Experiential Exhibitions Based on Conservation Science Content of Bronze Mirror

  • Jo, Young Hoon;Kim, Jikio;Yun, Yong Hyun;Cho, Nam Chul;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.37 no.4
    • /
    • pp.362-369
    • /
    • 2021
  • In museums, exhibition content focuses mostly on cultural heritage's historical values and functions, but doing so tends to limit visitors' interest and immersion. To counter this limitation, the study developed an experiential media art exhibition fusing bronze mirrors' traditional production technology and modern conservation science. First, for the exhibition system, scientific cultural heritage contents were projected on the three-dimensional (3D) printed bronze mirror through interactions between motion recognition digital information display (DID) and the projector. Then, a scenario of 17 missions in four stages (production process, corrosion mechanism, scientific analysis and diagnosis, and conservation treatment and restoration) was prepared according to the temporal spectrum. Additionally, various media art effects and interaction technologies were developed, so visitors could understand and become immersed in bronze mirrors' scientific content. A user test was evaluated through the living lab, reflecting generally high levels of satisfaction (90.2 points). Qualitative evaluation was generally positive, with comments such as "easy to understand and useful as the esoteric science exhibition was combined with media art" (16.7%), "wonderful and interesting" (11.7%), and "firsthand experience was good" (9.2%). By combining an esoteric science exhibition centered on principles and theories with visual media art and by developing an immersive directing method to provide high-level exhibition technology, the exhibition induced visitors' active participation. This exhibition's content can become an important platform for expanding universal museum exhibitions on archaeology, history, and art into conservation science.

The Effect of Gait Exercise Using a Mirror on Gait for Normal Adult in Virtual Reality Environment: Gait Characteristics Analysis (가상현실환경에서 정상성인의 거울보행이 보행특성에 미치는 영향)

  • Lee, Jae-Ho
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.3
    • /
    • pp.233-246
    • /
    • 2022
  • Purpose : The study aims to determine the effects of virtual and non-virtual realities in a normal person's mirror walk on gait characteristics. Methods : Twenty male adults (Age: 27.8 ± 5.8 years) participated in the study. Reflection markers were attached to the subjects for motion analysis, and they walked in virtual reality environments with mirrors by wearing goggles that showed them the virtual environments. After walking in virtual environments, the subjects walked in non-virtual environments with mirrors a certain distance away after taking a 5 min break. To prevent the order effect caused by the experiential difference of gait order, the subjects were randomly classified into groups of 10 and the order was differentiated. During each walk, an infrared camera was used to detect motion and the marker positions were saved in real time. Results : Comparison between the virtual and non-virtual reality mirror walks showed that the movable range of the leg joints (ankle, knee, and hip joints), body joints (sacroiliac and atlantoaxial joints), and arm joints (shoulder and wrist joints) significantly differed. Temporal characteristics showed that compared to non-virtual gaits, the virtual gaits were slower and the cycle time and double limb support time of virtual gaits were longer. Furthermore, spacial characteristics showed that compared to non-virtual gaits, virtual gaits had shorter steps and stride lengths and longer stride width and horizontally longer center of movement. Conclusion : The reduction in the joint movement in virtual reality compared to that in non-virtual reality is due to adverse effects on balance and efficiency during walking. Moreover, the spatiotemporal characteristics change based on the gait mechanisms for balance, exhibiting that virtual walks are more demanding than non-virtual walks. However, note that the subject group is a normal group with no abnormalities in gait and balance and it is unclear whether the decrease in performance is due to the environment or fear. Therefore, the effects of the subject group's improvement and fear on the results need to be analyzed in future studies.

Confocal off-axis optical system with freeform mirror, application to Photon Simulator (PhoSim)

  • Kim, Dohoon;Lee, Sunwoo;Han, Jimin;Park, Woojin;Pak, Soojong;Yoo, Jaewon;Ko, Jongwan;Lee, Dae-Hee;Chang, Seunghyuk;Kim, Geon-Hee;Valls-Gabaud, David;Kim, Daewook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.75.2-76
    • /
    • 2021
  • MESSIER is a science satellite project to observe the Low Surface Brightness (LSB) sky at UV and optical wavelengths. The wide-field, optical system of MESSIER is optimized minimizing optical aberrations through the use of a Linear Astigmatism Free - Three Mirror System (LAF-TMS) combined with freeform mirrors. One of the key factors in observations of the LSB is the shape and spatial variability of the Point Spread Function (PSF) produced by scatterings and diffraction effects within the optical system and beyond (baffle). To assess the various factors affecting the PSF in this design, we use PhoSim, the Photon simulator, which is a fast photon Monte Carlo code designed to include all these effects, and also atmospheric effects (for ground-based telescopes) and phenomena occurring inside of the sensor. PhoSim provides very realistic simulations results and is suitable for simulations of very weak signals. Before the application to the MESSIER optics system, PhoSim had not been validated for confocal off-axis reflective optics (LAF-TMS). As a verification study for the LAF-TMS design, we apply Phosim sequentially. First, we use a single parabolic mirror system and compare the PSF results of the central field with the results from Zemax, CODE V, and the theoretical Airy pattern. We then test a confocal off-axis Cassegrain system and check PhoSim through cross-validation with CODE V. At the same time, we describe the shapes of the freeform mirrors with XY and Zernike polynomials. Finally, we will analyze the LAF-TMS design for the MESSIER optical system.

  • PDF

Miniature Fluorescence Detection System for Protein Chips by Prism (프리즘을 이용한 소형 단백질칩 분석 형광측정 시스템 개발)

  • Choi, Jae-Ho;Kim, Ho-Seong;Lee, Kook-Nyung;Kim, Eun-Mi;Kim, Yong-Kweon;Kim, Byung-Gee
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2040-2042
    • /
    • 2004
  • This paper presents a miniature optical system for the fluorescence detection of the patterned protein chip. The patterned protein chip was fabricated using MEMS process. The fluorescence from the patterned protein chip was measured while varying the concentration of the BSA. The fluorescence light is separated spatially from the excitation beam using mini-size prism to increase SNR (Signal-to-Noise Ratio). The combination of prism and mirrors can convert the excitation light from the laser diode to uniform illumination on the specimen. We believe that the proposed system for fluorescence detection can be applied to rea1ization of point-of-care.

  • PDF

A Study for Non-paraxial Diffraction Caused by Curved Principal Planes (주요면의 만곡에 따른 비근축 회절에 대한 연구)

  • Lee, Jong Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • According to the paraxial diffraction theory, diffractions of optical systems which have the same wavelength and numerical aperture are always the same, independent of lateral magnification. But the diffractions for optical systems with different magnifications are varied due to the non-paraxial diffraction effect on the imaging of high NA optics. In this study, the non-paraxial diffraction effect is interpreted as a phenomena caused by curved principal planes. Pupil functions and modulation transfer functions of aplanatic conic mirrors are examined as a function of lateral magnification.

Three-dimensional measurement of object surface and moving particles using at TV camera

  • Kawasue, Kikuhito;Iwamoto, Isamu;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1302-1305
    • /
    • 1997
  • A new approach to the three-dimensional measurement of the object surface and moving particles is introduced. A single TV camera with an apparatus to add the circular bias to the image enables us to record the three-dimensional information of measuring points as streaks on a single image. Every shaped of the streak on the image plane is related to the position of the measuring point. the information is extracted form the image using an image processign technique.

  • PDF

Optical Design of Multimedia-Embedded LED Dental Astral Lighting using the Reverse Dual Reflector Method

  • Kwon, Young Hoon;Hwang, Hyo Chang;Jun, Hwa Joon;Kwon, Jin Hyuk
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.409-414
    • /
    • 2015
  • Light-emitting diodes (LED) have many advantages for dental astral lighting because of their high color rendering index (CRI), low power consumption, light weight and longer life. A dental astral lamp is specially designed and simulated for securing the extra space for installing a multimedia display that will be helpful for treating young patients. The optical system using the reverse dual reflection method consisted of four illumination modules disposed at the four corners of the dental astral lamp, and each module comprises a high power LED, an elliptical mirror, and a multifacet reflector assembly using eight cylindrical mirrors. It is shown that the required illuminance, illumination pattern, and the illumination uniformity are well satisfied.